www.haleyaldrich.com

REPORT ON SAFETY FACTOR ASSESSMENT POND 003 AND POND 004 NEW MADRID POWER PLANT NEW MADRID, MISSOURI

by Haley & Aldrich, Inc. Cleveland, Ohio

for Associated Electric Cooperative, Inc. Springfield, Missouri

File No. 40616-300 October 2016

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

17 October 2016 File No. 40616-300

Associated Electric Cooperative, Inc. 2814 South Golden Avenue P.O. Box 754 Springfield, Missouri 65801

Attention: Russ Weatherly Supervisor, Land and Water Resources

Subject: Report on Safety Factor Assessment Pond 003 and Pond 004 New Madrid Power Plant New Madrid, Missouri

Mr. Weatherly:

We are pleased to submit herewith our report to Associated Electric Cooperative, Inc. (AECI) entitled, "Report on Safety Factor Assessment, Pond 003¹ and Pond 004², New Madrid Power Plant, New Madrid, Missouri." This report has been prepared in accordance with our agreed to scopes of work and your subsequent authorizations, and includes background information regarding the project, the results of our field investigation program, and the results of our safety factor assessment.

The purpose of this study was to evaluate the subsurface soil and water conditions at the coal combustion residuals (CCR) surface impoundments site and evaluate the stability of the subject impoundments in accordance with the Environmental Protection Agency (EPA) 40 CFR Parts 257 and 261, "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities" (CCR Rule). A subsurface exploration program was conducted in September 2015 at the project site to obtain subsurface information for engineering evaluations. The program consisted of drilling a total of nine (9) test borings and advancing ten (10) cone penetrometer soundings. A review of the subsurface information and laboratory test results revealed that the soils used to construct the impoundment dikes are not susceptible to liquefaction. A series of one-dimensional ground response analyses were performed to estimate the subsurface response to six (6) site-specific earthquake events at the New Madrid site. The results were used to perform Newmark displacement analyses and select the pseudostatic coefficient for use in the seismic stability analyses. The results of the stability analyses indicate that the static safety factors are above the minimum required values for all analyzed sections at each impoundment. Preliminary seismic stability analyses for the analyzed sections indicated acceptable safety factors for all sections except the section on the west side of Pond 003 where CCR had been

¹ Pond 003 is also referred to as the 003 Unlined Pond

² Pond 004 is also referred to as the 004 Slag Dewatering Pond

staged directly adjacent to the dike within the impoundment footprint. AECI has since regraded that material along the west side of Pond 003 to a configuration that that has acceptable safety factors.

This report includes background information regarding the project, the results of our field investigation program, and the detailed results of our safety factor assessment.

Background

The project site is located at the New Madrid Power Plant located at 41 St. Jude Industrial Park Highway, New Madrid, Missouri as shown on **Figure 1**. The approximately 100-acre Pond 003 and 10-acre Pond 004 are located on the east side of the site, adjacent to the Mississippi River.

AECI is be required to meet the requirements of the Environmental Protection Agency (EPA) 40 CFR Parts 257 and 261, "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities" (CCR Rule) effective 19 October 2015. In particular for existing active CCR surface impoundments, AECI must demonstrate that specified slope stability safety factors are met in accordance with §257.73(e). This report satisfies that requirement.

Purpose and Scope

The purpose of this study was to investigate the subsurface soil and water conditions at the site and to perform the initial safety factor assessment in accordance with Section §257.73(e)(1) of the CCR Rule. To achieve the objective discussed above, the scope of work undertaken for this investigation included the tasks listed below.

- Planning and executing a field investigation program to obtain subsurface information for dike liquefaction and slope stability analyses. A total of nine (9) test borings were drilled to depths ranging from between approximately 25 and 100 ft below ground surface. Ten (10) cone penetrometer soundings (CPTs) were performed to depths ranging from approximately 50 to 100 ft below ground surface.
- Conducting a geotechnical laboratory testing program on soil, CCR and boiler slag samples recovered from subsurface explorations to aid in classification and for determination of engineering properties required for engineering analyses.
- Performing a site-specific seismic analysis to estimate the subsurface response to an earthquake event at the New Madrid site.
- Performing a Newmark displacement analysis to determine the amount of slope displacement for a given value of yield acceleration.
- Performing slope stability (static and seismic) and liquefaction analyses.

Field Investigation Program

SUBSURFACE EXPLORATION PROGRAM

A subsurface exploration program was conducted at the project site during the period 14 September 2015 to 22 September 2015 to obtain subsurface information for engineering evaluations. The program consisted of drilling a total of nine (9) test borings and advancing ten (10) CPTs. The borings were drilled by Bulldog Drilling, Inc. of Dupo, IL using an ATV-mounted CME 55 L6 drill rig. The CPT soundings were advanced by ConeTec, Inc. of West Berlin, New Jersey using a track-mounted rig. A Haley & Aldrich representative was present in the field to observe the subsurface explorations.

The locations of the subsurface explorations are shown on **Figure 2**. The as-drilled locations and elevations of the explorations were determined in the field by Smith & Company Engineers by optical survey. The locations and elevations of the explorations should be considered accurate only to the degree implied by the method used. A summary of the subsurface explorations is presented in **Table I**³.

Test Borings

The test borings were drilled to depths ranging from approximately 25 ft to 100 ft below ground surface. The borings were advanced using 4-1/4-in. inside diameter (i.d.) hollow stem augers. Split-spoon samples were typically obtained continuously for the upper 15 ft at each test boring and at 5 ft intervals thereafter. In some instances, continuous split spoon sampling extended to depths up to 30 ft until natural soil was observed. The standard penetration resistance was determined at each sample level by counting the number of blows required to drive a standard split-spoon sampler (1-3/8-in. inside diameter, 2-in. outside diameter) a distance of either 18 in. or 24 in. into undisturbed soil and ash under the impact of a 140-lb hammer free-falling 30 in. The number of blows required to advance the sampler was recorded for each 6-in. interval. The standard penetration resistance N-value is determined by summing the number of blows required to advance the sampler the middle 12 in. of the 24-in. sampling range or by summing the number of blows required to advance the sampler the last 12 in. of the 18-in.

Relatively undisturbed samples of ponded CCR were obtained from test borings HA-B4A and HA-B5A by pushing a 3-in. diameter thin-walled steel tube (Shelby tube) into the CCR at a planned sampling depth. A hydraulically operated stationary piston sampler attached to the drill rods was used to advance the tubes. The tubes were removed from the ground and sealed.

Samples recovered from the borings were taken to Shannon and Wilson, Inc. in Saint Louis, Missouri for laboratory testing. The boring logs are presented in **Appendix A**. The boring logs and related information depict subsurface conditions only at the specific locations and at the particular time designated on the logs. Subsurface conditions at other locations may differ from conditions occurring at the exploration locations. Also the passage of time may result in a change in the subsurface conditions at these exploration locations.

³ Note: a table that does not appear near its citation can be found in a separate table at the end of the report.

Cone Penetrometer Soundings

The majority of the CPT soundings were performed immediately adjacent to SPT borings to facilitate correlating the readings from the CPT sounding with the samples obtained from the split-spoon and Shelby tube samplers. The CPT soundings were advanced to depths of approximately 50 ft and 100 ft below ground surface. The CPT soundings were performed using a piezocone penetrometer that provides measurements of pore water pressure at one or more locations on the penetrometer surface in general conformance with ASTM D5778. CPT data, including pore pressure measurements, were collected at 2-cm depth intervals.

The rod string and cone were advanced in natural ground at the standard rate of 2 cm/sec. At HA-C8, the rod string was advanced through the existing stratum of fly ash/boiler slag at a rate of approximately 0.6 cm per second and through the underlying natural soil at the standard rate of 2 cm/sec. The slower advancement rate in the fly ash/boiler slag was utilized because research has shown that the slower penetration rate better simulates the drained condition and provides a better interpretation of the CCR friction angle.

Seismic cone penetration testing was used to obtain in-situ measurements of shear wave velocity at HA-C7 and HA-C8. Measurements were taken at 1-meter (3.3-ft) intervals, which correspond to the intervals at which additional rods needed to be added to the rod string. Pore water dissipation testing was also performed at select depths in all CPTs to estimate hydraulic conductivity/pore pressure dissipation properties. The CPT sounding results are presented in **Appendix B**.

LABORATORY TESTING PROGRAM

A laboratory testing program was conducted on selected soil and CCR samples recovered from subsurface explorations to aid in classification and for determination of engineering properties required for design. The primary purpose of the testing program was to evaluate the index and strength properties of the soil, CCR, and boiler slag materials. Testing included natural moisture contents, Atterberg limits, grain size distributions, percent passing the No. 200 sieve, unconsolidated-undrained (UU) triaxial strength, consolidation, and tube density. The tests were performed in general conformance with applicable ASTM test procedures. Results of the laboratory testing program are presented in **Appendix C** and are summarized in **Table II**.

Subsurface Soil and Water Conditions

GEOLOGY

The site is located within the New Madrid Seismic Zone. The new Madrid Seismic Zone lies at the north end of the Mississippi Embayment, which is a deep, low-lying basin filled with Cretaceous to recent sediments. The stratigraphy at our site is presented on **Figure 3** and is based on the general profile develop by Van Arsdale and TenBrink (2000). The project site is immediately underlain by imported embankment fill and levee fill associated with embankment and levee construction as well as various deposits of fly ash and boiler slag associated with coal burning operations.

The existing fill is underlain by Quaternary Mississippi River alluvium, which is characterized by silty clay and sand, Pleistocene Loess, which is characterized by silt and clayey silt, and Pliocene-Pleistocene Upland Complex Gravel consisting of fine to very coarse sand and gravel. These sediments are believed to be surficial deposits of fluvial or estuarine origin.

Underlying the Quaternary Deposits is the Jackson Formation, which is characterized by fluvial/deltaic medium to very fine grained silty sand, interbedded with clayey silt. The Jackson Formation overlies the Eocene Claiborne Group that consists of the Cockfield Formation over the Cook Mountain Formation over The Memphis Sand. The Cockfield formation is characterized by fluvial/deltaic silt and clay interbedded with medium to fine grained sand. The Cook Mountain Formation consists of silt and clay containing variable amounts of lignite and sand. The Memphis Sand is predominately described as consisting of fluvial/deltaic fine to very coarse grained quartzose sand containing rock fragments, pyrite and lignite.

Below the Eocene Claiborne Group is Paleocene consisting of the Wilcox Group and Midway Group. The Wilcox Group is comprised of the Flour Island Formation overlying the Fort Pillow Sand. The Flour Island formation is characterized by silty clay and clayey silt with lenses of fine grained sand. The Fort Pillow Sand is described as consisting of fine to very coarse grained quartzose sand. The Midway Group is comprised of Old Breastworks Formation, Porters Creek Clay and The Clayton Formation. Old Breastworks Formation is described as sandy, micaceous silty clay. The Porters Creek Clay is described as a micaceous clay. The Clayton Formation consists of glauconitic, fossiliferous clay.

Underlying the Wilcox and Midway groups is Upper Cretaceous soil consisting of McNairy Sand, Demopolis Formation and Coffee Formation. McNairy Sand is characterized by fine to coarse grained sand interbedded with silty clay. The Demopolis Formation is composed of calcareous clays, marls and some chalky materials. The Coffee Formation is made up of stratified and cross-bedded clays and fine grained sand.

Below the Upper Cretaceous lies the Paleozoic strata. The Paleozoic strata is described as fine to coarse crystalline dolomite. At the AECI site, the depth to the Paleozoic strata is approximately 1,900 ft below ground surface.

The geologic descriptions discussed herein are credited to various references entitled "General Geology of the Mississippi Embayment" (Cushing, Boswell, Hosman 1964), "Deep Shear Wave Velocity Profiles of Mississippi Embayment Sediments Determined From Surface Wave Measurements" (Rosenblad, 2007) and "Late Cretaceous and Cenozoic Geology of the New Madrid Seismic Zone" (Van Arsdale and TenBrink, 2000).

SUBSURFACE CONDITIONS

Descriptions of the soil conditions encountered during the subsurface exploration program conducted at the site are provided below in order of increasing depth below ground surface. Actual soil conditions

between boring locations may differ from these typical descriptions. Refer to the test boring logs for specific descriptions of soil samples obtained from the borings.

The subsurface conditions identified by the CPT soundings do not represent material classifications based on grain-size distributions, index tests, or visual observation. Rather, the CPT soundings provide an indicator of relative behavior type based on the mechanical characteristics measured during the soundings. For this reason, the descriptions of subsurface conditions discussed below are based on our visual-manual classification of samples obtained from test borings and the results of laboratory testing.

- <u>ROADWAY FILL</u> Below the ground surface there is a stratum of fill material primarily described as SAND and GRAVEL. This stratum was encountered only in HA-B1, HA-B2, and HA-B6 and was fully penetrated where encountered. The thickness of this stratum was approximately 1 ft.
- <u>FLY ASH</u> Below the ground surface at HA-B5, there is a stratum of fill material primarily described as brown, dark-brown, and black SILT with sand (ML). This stratum was encountered only in HA-B5 and was fully penetrated. Where encountered and fully penetrated, the thickness of this stratum was approximately 17 ft.
- <u>FLY ASH INTERMIXED WITH BOILER SLAG</u> Below the fly ash at HA-B5, there is a stratum of fill material primarily described as brown and dark-brown SILT with sand and slag particles (ML). This stratum was encountered only in HA-B5 and was fully penetrated. Where encountered, the thickness of this stratum was approximately 15 ft.
- <u>BOILER SLAG</u> Below the ground surface at HA-B4, there is a stratum of fill material primarily described as brown and dark-brown SILT with sand and slag particles (ML). This stratum was encountered only in HA-B4 and was fully penetrated. Where encountered, the thickness of this stratum was approximately 15 ft.
- <u>FILL</u> Below the ground surface in HA-B3 and HA-B7 and below the ROADWAY FILL in HA-B1, HA-B2, and HA-B6 a stratum of FILL material was encountered. The FILL is primarily described as lean CLAY (CL) and fat CLAY (CH). This stratum was encountered and fully penetrated in borings HA-B1, HA-B2, HA-B3, HA-B6, and HA-B7. Where encountered and fully penetrated, the thickness of the stratum ranged from approximately 10.0 ft to 25.0 ft. The density of cohesive, fine-grained soils encountered in this stratum ranged from soft to stiff, but was generally medium stiff to stiff.
- <u>ALLUVIAL DEPOSITS</u> Below the FILL, FLY ASH, FLY ASH INTERMIXED WITH BOILER SLAG, and BOILER SLAG there is a stratum of natural soil primarily described as silty SAND (SM), poorly graded SAND (SP), SILT (ML), lean CLAY (CL), and fat CLAY (CH). This stratum was encountered in all borings. This stratum was fully penetrated in all borings with the exception of HA-B7. Where encountered and fully penetrated, the thickness of this stratum ranged from approximately 7 ft to 26 ft. The density of coarse-grained soils encountered in this stratum ranged from very loose to medium dense. The consistency of fine-grained soils encountered in this stratum ranged from soft to stiff.

> <u>FLUVIAL DEPOSITS</u> – Below the ALLUVIAL DEPOSITS, there is a stratum of natural soil primarily described as light brown and gray poorly-graded SAND (SP), and light brown well-graded sand (SW). This stratum was encountered in all borings except HA-B7, but was not fully penetrated by any of the test borings. The density of coarse-grained soils encountered in this stratum ranged from medium dense to dense.

Water levels were typically measured in the boreholes when water was encountered during drilling and after the test borings were completed. Measured water levels are summarized in **Table I**. Where encountered, water levels measured during drilling generally ranged from a depth of 18 to 43 ft below ground surface, which corresponds to a water level ranging between approximately El. 257 and 293 for geotechnical evaluation purposes. It should be noted that the water levels measured in borings HA-B3, HA-B5, and HA-B5A were significantly higher than the water levels measured in the other borings and likely represent localized water conditions within the impoundment footprint.

Water levels were also estimated by the cone penetrometer soundings and are also summarized in **Table I**. Water levels estimated during the soundings generally ranged from 30 to 48 ft below ground surface, which corresponds to a water level ranging between approximately El. 258 and El. 274. It should be noted that measurements estimated during the soundings did not involve physical observation of water levels, but rather an estimated water level based on pore pressure measurements. The estimates of water levels at each sounding should only be considered accurate to the degree implied by the determination method.

Water level readings have been made in the subsurface explorations at times and under conditions discussed herein. However, it must be noted that fluctuations in the level of the water may occur due to variations in power plant sluicing activities, season, rainfall, temperature, dewatering activities, and other factors not evident at the time measurements were made and reported herein.

Safety Factor Assessment

As mentioned previously, the purpose of this study was to perform the initial safety factor assessment in accordance with Section §257.73(e)(1) of the CCR Rule. As required by the CCR Rule, the initial safety factor assessment is performed for each applicable CCR unit to determine calculated factors of safety (using simple static and pseudo-static analysis) relative to the minimum prescribed safety factors for the critical cross section of the embankment. Those are defined as follows:

- For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.
- The calculated static factor of safety under the long-term, maximum storage pool loading conditions must equal or exceed 1.50.
- The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.
- The calculated seismic factor of safety must equal or exceed 1.00.

The results of our evaluation of the safety factors are presented in the following sections of the report.

LIQUEFACTION EVALUATION

During strong earthquake shaking, loose, saturated cohesionless soil deposits may experience a sudden loss of strength and stiffness, sometimes resulting in loss of bearing capacity, large permanent lateral displacements, and/or seismic settlement of the ground. This phenomenon is called soil liquefaction.

In accordance with the requirements of §257.73(e)(1)(iv), liquefaction evaluation required is to assess the potential for liquefaction of the impoundment dikes at the site in question. A variety of screening techniques exist to distinguish sites that are clearly safe with respect to liquefaction from those sites that require more detailed study. One of the most commonly used screening techniques used to make this assessment is the evaluation of fines content and plasticity index. In general, soils having greater than 15 percent (by weight) finer than 0.005 mm, a liquid limit greater than 35 percent, and an in-situ water content less than 90 percent of the liquid limit generally do not liquefy (Seed and Idriss, 1982).

The results of our subsurface investigation indicate that the impoundment dikes at Pond 003 and Pond 004 are primarily constructed of clay soils and have the following characteristics:

- 90 percent (by weight) finer than 0.005
- Liquid limits > 40
- In-situ moisture contents less than 50 percent of the liquid limit

In consideration of the clay soils used to construct the dikes, it is our opinion, in accordance with generally accepted standards, that the impoundment dikes are not constructed of soils that are susceptible to liquefaction.

GLOBAL STABILITY FACTORS OF SAFETY

Stability analyses have been performed in general conformance with the principles and methodologies described in the USACE Slope Stability Manual (U.S. Army Corps of Engineers, 2003). Conventional static and seismic stability analyses of the impoundment dike structures were performed for rotational and block failures using limit equilibrium methods. Limit equilibrium methods compare forces, moments, and stresses which cause instability of the mass of the dike to those which resist that instability. The principle of the limit equilibrium method is to assume that if the slope under consideration were about to fail, or at the structural limit of failure, then one must determine the resulting shear stresses along the expected failure surface. These determined shear stresses are then compared with the shear strength of the soils along the expected failure surface to determine the safety factor. The specific details of the analyses performed for Pond 003 and Pond 004 are presented in the following sections of this report.

DESIGN WATER LEVEL

As stated earlier, subsurface water levels measured during our subsurface exploration program indicated static water levels were generally 30 to 48 ft below the existing ground surface. In Pond 003, zones of perched water within the impoundment were encountered within the fly ash and boiler slag due to sluicing operations. Accordingly, the following static water levels were used in our analyses.

<u>Location</u>	<u>Elevation</u>
Pond 003	East Side – El. 262
	West Side – El. 274
Pond 004 (North Portion)	East Side - El. 261
Pond 004 (Southern Portion)	East Side – El. 258 West Side – El. 262

The water retained in each impoundment must be modeled at the maximum storage pool level for the static drained and seismic undrained analyses. The maximum surcharge pool level must be used to model the ponded water for the static undrained analyses. This approach is consistent with the requirements of the CCR Rule. The specific pool levels used in our analyses are summarized below and chosen as the conservative values associated with each impoundment and cross sections.

<u>Location</u>	<u>Maximum</u>	<u>Maximum</u>
	Storage Pool Level	Surcharge Pool Level
Pond 003 (max. storage)	El. 301	El. 309
Pond 004 (max. storage)	El. 294	El. 301

Given the prescribed impoundment pool levels and the design static groundwater levels mentioned above, a seepage analysis was performed to determine the piezometric head between the edge of the impoundment and the toe of the dike, which is where the static groundwater level was encountered. The computer software program, Slide 6.029, developed by RocScience, Inc., was used to perform the seepage analyses and the resulting piezometric head was used in the stability analyses discussed herein.

MATERIAL PROPERTIES

The material properties used in our analyses have been developed using the results of the referenced test borings, CPT soundings, and laboratory testing. When evaluating the CPT results, material strengths were typically determined by averaging the measurements in a particular stratum and choosing conservative strength properties equal to the average value minus one standard deviation. A summary of the material properties is provided below in **Table III**.

TABLE III MATERIAL PROPER	TIES			
Material	Material Strength	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)
Fach and use and Fill	Drained	115	50	30
Embankment Fill	Undrained	115	800	0
	Drained	115	50	30
Levee FIII	Undrained	115	800	0
	Drained	110	0	30
Boller Slag (Fill)	Undrained	110	500	0
	Drained	90	0	28
FIY ASN (FIII)	Undrained	90	500	0
Fly Ash / Boiler	Drained	105	0	29
Slag (Fill)	Undrained	105	800	0
	Drained	110	50	28
Alluvial Clay	Undrained	110	1300	0
	Drained	108	0	36
Alluvial Sand	Undrained	108	0	36
Fluxial Cand	Drained	120	0	38
Fiuviai Sand	Undrained	120	0	38

Seismic cone penetration testing was used to obtain in-situ measurements of shear wave velocity during the subsurface exploration program. The insitu measurements were performed to a depth of 95 ft below ground surface. Below that depth, shear wave velocity measurements of the underlying soils were approximated using published data specific to the Mississippi Embayment and the New Madrid Seismic Zone (Cramer, Hashash, Romero, Rosenblad, Van Arsdale). The site specific shear wave velocity profile is shown on **Figure 4**.

SITE SPECIFIC SEISMIC RESPONSE ANALYSIS

Introduction

As mentioned previously, the New Madrid Power Plant is located within the New Madrid Seismic Zone and the Mississippi embayment. The natural embayment soils underlying the impoundments are estimated to be 1,900-ft thick. It has been demonstrated that strong ground motions are significantly de-amplified at both the short and long periods due to the nonlinear behavior of the soils in the Mississippi embayment. It has also been shown that at short periods increasing soil thickness correlates with a decreasing hazard due the nonlinear soil behavior. Similarly, at long periods, increasing soil thickness correlates with increasing hazard due to soil resonance (Cramer, 2015).

Overview of Site-Specific Seismic Analysis

A one-dimensional ground response analysis was performed to estimate the subsurface response to an earthquake event at New Madrid. Due to the complex nature of the analyses required, Dr. Professor Edward Kavazanjian, Jr. at Arizona State University and Dr. Chris Cramer at the University of Memphis were retained as part of our team to assist with the site-specific seismic analyses.

It is important that the rock motions and soil characteristics are correlated to the site conditions at the New Madrid Power Plant. Properly conditioned bedrock strong ground motions (acceleration time histories) are required to perform a site-specific seismic analysis. Strong motion records for large magnitude events are not available for Central U.S. (Romero and Rix, 2001). Therefore, alternative records were obtained from other sources that approximate the spectral response characteristics at the site.

The bedrock at the site is classified as NEHRP Site Class A, hard rock. The USGS Uniform Hazard spectral response characteristics for a hypothetical Site Class A rock, based on the 2,500 –year return period ground motions, were used to identify the spectral characteristics of the time histories (i.e., the "Target Spectrum") used for the site-specific evaluation.

USGS Deaggregation and Deterministic Target Spectrum

There is a great deal of uncertainty with regard to predicting the location, size, and shaking intensity of future earthquakes. Probabilistic Seismic Hazard Analysis (PSHA) aims to quantify these uncertainties, and combine them to produce a description of the distribution of future shaking that may occur at a site. The 2008 NSHMP PSHA interactive deaggregation web site was used to obtain the characteristics of the most significant earthquakes (the earthquakes that contribute the most to the seismic hazard) responsible for seismic activity at the New Madrid power plant. This website produces graphical representations of the characteristics of earthquake events most likely to affect the site within a given time span. The deaggregation plot for spectral response period T=0.1s is shown on **Figure D-1 located in Appendix D**. This plot suggests that the representative design earthquake for ground motions with a return period of 2,500 years should be between magnitude 7.5 and 8.0 at a distance of approximately 11 km from the site.

The significant characteristics of the earthquake such as magnitude and distance are used to select representative ground motions. The characteristics are also used to construct the deterministic target spectrum that is used for selecting ground motions.

A special type of target spectrum, called the conditional mean spectrum (CMS), was created for the study because it focuses the spectral response of all the ground motions to a particular period along the target spectrum (Baker, 2011). The particular target period selected is related to characteristics of the structure being analyzed such as shear wave velocity and height of sliding mass in the case of the impoundments. Based on the characteristics of general failure planes determined from slope stability analysis for the impoundment, a target period of 0.1s was chosen for the deterministic CMS target spectrum for the New Madrid Power Plant. The magnitude of the CMS target spectrum was then

amplified to a mean plus one standard deviation target which is conservative (i.e., the approximately 84th percentile ground motion, rather than the median, or expected, ground motion) and is generally chosen to evaluate structures that are of critical importance.

The deterministic target spectrum is based on ground motion prediction equations (GMPEs) that use magnitude and distance to predict the spectral response of the ground motion. According to the USGS PSHA, the largest event predicted to affect New Madrid Power Plant is a magnitude 8 earthquake that is 10.5km from the site. The computer software program Shake 2000, developed by GeoMotions, provided the central and eastern U.S. (CEUS) GMPEs and the CMS algorithms used to create the target spectrum. Site-specific spectral responses were generated from five CEUS attenuation relationships using Shake 2000 as shown on **Figure D-2 in Appendix D**. These attenuation relationships were based on a magnitude 8 earthquake as a distance of 10.5 km from the source. The largest spectral response in the group (i.e., Campbell, 2003) was selected to produce the target spectrum for the site.

Conditional Mean Spectrum Groundmotions Scaled To Target Period T=0.1s

The CMS spectrum according to Baker, 2011 is to be constructed with the ground motions scaled so that their spectral response at the target period, T* matches the spectral response at the CMS Target spectrum. The target period, T* is chosen to approximate the fundamental frequency of the sliding mass which can be determined from the location of the failure plane within the slope at a condition of equilibrium (i.e., safety factor equal to 1.0). The shear wave velocity V_s of the sliding mass was estimated to range between 450 ft/sec to as much as 1000 ft/sec for the impoundments at the site based on our in-situ shear wave testing. Our analyses assumed the height of the sliding mass varies from 5ft to 21ft. Based on the anticipated variance of embankment height and shear wave velocity, an average fundamental frequency of T*=0.1s was used to scale the ground motions to the target spectrum

Shake 2000 was used to provide the CMS spectrum for Campbell 2003 CEUS GMPE using a target period $T^* = 0.1s$ and amplifying the CMS to correspond to a mean plus one standard deviation spectrum. The mean plus one standard deviation spectrum shown on **Figure D-3 in Appendix D** was used as the deterministic CMS target spectrum for the New Madrid Power Plant.

Rock Motions for The CMS

Six time history records were selected to match the target response spectrum for the site. Five of these rock motions were obtained from naturally occurring events and one rock motion was synthetically generated to match a magnitude 8 earthquake associated with the ground response for the Mississippi Embayment at Memphis, TN (Atkinson 2002). A primary focus was to match the ground motion spectra to the CMS target spectrum, as suggested by NEHRP (2011) when considering magnitude, distance, and focal mechanism. Rock motion records were selected from the Pacific Earthquake Engineering Research (PEER) Center's Strong Motion Database. The motions are summarized below in **Table IV** and depicted graphically **Figure D-4 in Appendix D**. As shown on **Figure D-5 in Appendix D**, the arithmetic mean spectrum of the generated records closely matches the CMS bedrock spectrum over the period range of interest.

TABLE IV EARTHQUAK	e record	DS					
	Return		Earth	quake Re	ecord Used		
Event	Period	PEER File Name	Earthquake	М	Mechanism	Distance (km)	
		RSN497-Nahanni_S3270.AT2	Nahinni	6.76	Reverse	5.32	
		RSN550_Chalfant.A_A-CPL070.AT2	Chalfant	6.19	Strike-slip	18.31	
Canditianal		RSN4481_L-Aquila_FA030XTE.AT2	L'Aquila	6.3	Normal	6.81	
Mean	2,500-	2,500-	RSN825_CAPEMEND_CPM000.AT2	Cape Mendocino	7.1	Reverse	6.96
Response	year	RSN8158_CChurch_LPCCN10W.AT2	Christ Church	6.2	Reverse Oblique	6.12	
		N/A	Synthetic (Atkinson and Beresnev)	8.0	N/A	N/A	

Due to the unusually large magnitude and close proximity of the earthquake projected for the site, it is difficult to locate ground motions that effectively scale to the shorter period portion of the CMS target spectrum. Many of the selected ground motions have spectral response characteristics that are significantly lower than the target between periods ranging from 0.01s to 0.06s. According to the Federal Highway Administration, due to the low number of ground motions for central and eastern U.S., it is acceptable to spectrally match the ground motions to the lower period portions of the target spectrum (FHWA, 2011). For this reason, the ground motions were spectrally matched to the CMS target spectrum between T=0.02sec to 0.06sec as shown on **Figure D-6 in Appendix D.**

One-Dimensional Ground Response Analysis

As mentioned previously, a one-dimensional ground response analysis was performed to estimate the surface ground motion at the site. The soil column used as input into the model was constructed from the shear wave velocity profile at the site (from in-situ testing) along with other characteristics such as layer thickness, soil density and the dynamic behavior. The dynamic geotechnical properties (damping, modulus-damping curves, density, etc.) used in the ground response analysis were obtained from prior models developed by Dr. Chris Cramer and are representative of the non-linear, pressure dependent soil properties attributed to the Mississippi Embayment as described by Romero and Rix, 2005.

The computer software program Shake2000 was used to numerically simulate the propagation of rock motions applied to the base of the soil column up through the soil layers to the top of the soil column. Shake2000 uses an equivalent linear numerical technique to model the non-linear dynamic soil behavior in the soil column. **Figure D-7 included in Appendix D** shows the results of the Shake ground response analysis for the six representative rock motions. This figure compares the spectral response of the bedrock motions to the surface ground response and shows the transformation in response caused by wave propagation through the 1,900-ft thick soil column. **Table V** summarizes the surface PGA estimates at the New Madrid Power Plant.

TABLE V PREDICTED SURFACE PGA /	AND NEWMARK MA	GNITUDE CORRECT	ION FACTOR	
Earthquake	Original Magnitude	CMS Scaled-Matched PGA	Shake Surface PGA	Newmark Magnitude Correction Factor ¹
Nahinni	6.76	1.60 g	0.33 g	1.41
Chalfant	6.19	1.77 g	0.33 g	1.65
L'Aquila	6.30	1.60 g	0.66 g	1.60
Cape Mendocino	7.01	1.40 g	0.41 g	1.32
Christ Church	6.25	2.00 g	0.41 g	1.65
Synthetic (Atkinson and Beresnev)	8.00	0.95 g	0.47 g	1.00

¹ Determined using the method developed by Bray and Traversarou

Newmark Displacement Analysis

The Newmark method predicts the amount of block displacement for a given value of yield acceleration. The Newmark displacement analysis is based on the shear stress time history acting along the failure plane within the slope. The yield acceleration is the minimum amount of ground acceleration necessary to initiate motion along the failure surface and is used to determine the appropriate pseudo-static coefficient for seismic stability analyses.

Shake2000 was used to perform the Newmark displacement analysis by incorporating the results of the one-dimensional ground response analysis to estimate slope displacement. Shake2000 incorporates several different variants of the Newmark block displacement method and the numerical approach known as YSLIP developed by Kavazanjian and Matasovic (1996) was chosen for our analysis. All six site-specific bedrock motions were used to evaluate relationships between the Newmark permanent displacements and the associated yield acceleration. Several impoundment cross-sections were evaluated and the most conservative location of the failure plane was determined to be 15 ft below the top of slope.

After performing the Newmark displacement analysis, it was necessary to adjust the displacement predictions to correspond to the difference between the magnitudes of the ground motions used in the analysis and the magnitude of the representative earthquake event established for the New Madrid Power Plant. Correction factors were applied to scale the displacements to the target magnitude 8 event. The correction factors were determined using the approach developed by Bray and Travasarou (2007), which relates permanent displacement from a Newmark analysis with the magnitude of the earthquake event (Bray, 2007). **Figure D-8 in Appendix D** presents the magnitude scaled permanent displacement versus yield acceleration.

DECOUPLED SEISMIC STABILITY ANALYSIS

Methodology for Analyses

The computer software program Slide 6.029 was used to evaluate the static and seismic stability of the impoundment dikes. Analyses were performed to evaluate static drained (long-term) and undrained (short-term) strength conditions for circular and block failures using Spencer's method of slices. Spencer's method of slices was selected because it fully satisfies the requirements of force and moment equilibrium (limit equilibrium method).

Seismic stability was evaluated using pseudo-static analyses and a 20 percent reduction in material strength to represent the approximate threshold between large and small strains induced by cyclic loading (Duncan, 2014). Pseudo-static analysis models the seismic shaking as a "permanent" body force that is added to the force-body diagram of a conventional static limit-equilibrium analysis; typically, only the horizontal component of earthquake shaking is modeled because the effects of vertical forces tend to average out to near zero (Jibson, 2011). This is a traditional approach for evaluating the stability of a slope during earthquake shaking and provides a simplified safety factor analysis for one earthquake pulse. A safety factor greater than or equal to one (FS \geq 1.0) indicates a slope is stable and a safety factor below one (FS < 1.0) indicates that the slope is unstable.

Pseudo-static Coefficient

The pseudo-static coefficient, k_s , used in our seismic analyses was selected using the results of the Newmark displacement analysis discussed previously. Accordingly, to the MSHA Impoundment Design Manual, the acceptable displacement of coal refuse impoundments is 25% of the upstream freeboard (MSHA, 2009). At each impoundment based observed conditions, that equates to:

- Pond 003 8 ft freeboard, acceptable displacement is 24 in.
- Pond 004 7-ft Freeboard, acceptable displacement is 21 in.

Assuming the most conservative case of 21-in. acceptable displacement, **Figure D-8 in Appendix D** shows that the yield acceleration corresponding to the most conservative earthquake motion is 0.25g. A pseudostatic coefficient lower than 0.25 will result in more than 21 in. deformation and one higher than 0.25 will result in less than 21 in. deformation. For the seismic stability analyses performed for the impoundments, we selected a pseudostatic coefficient of 0.28. This value was selected because it is slightly above the minimum value, which is conservative, and will result in displacements at each impoundment that are below MSHA acceptable values.

Results of Stability Evaluation

The critical cross section is defined as that which is anticipated to be most susceptible amongst all cross sections. To identify the critical cross sections at our project site, we examined the following conditions at several cross section locations at each impoundment:

a. the geometry of the upstream and downstream slopes;

- b. phreatic surface levels within and below the cross sections;
- c. subsurface soil conditions;
- d. presence or lack of surcharge loads behind the crest of the dikes; and
- e. presence or lack of reinforcing measures in front of the dikes.

Examination of the conditions noted above resulted in the identification of five (5) critical cross sections. Two (2) of the cross sections were located at Pond 003 and three (3) of the cross sections were located at the Pond 004. The results of our analyses are presented below in **Table VI** and are shown on the Slide output files included in **Appendix D**. As shown below, the static safety factors are above the minimum required values for all sections. The pseudo-static analyses for the analyzed sections indicate acceptable seismic safety factors for sections A-A', B-B', C-C', and D-D'. Section E-E' was originally modeled with its configuration as of 2015 with CCR staged near the dike on the west side of the Pond 004 impoundment. The preliminary static analyses for that scenario indicated acceptable factors of safety, but the seismic analyses did not. As noted previously, AECI revised the configuration of that staged material in 2016, and the results of the revised E-E' configuration indicate acceptable seismic and static safety factors. The results of the analyses based on the revised configuration are presented in Table VI and Appendix D.

TABLE VI SUMMARY OF STABILITY EVALUATIONS													
				Dequired	Safety F	actor							
Cross Section	Condition ¹	Earthquake Event	Soil Strength	Safety Factor	Rotational Failure Surface	Block Failure Surface							
	Static	-	Drained	1.5	4.3	4.9							
A-A (Pond 004)			Undrained	1.4	4.3	4.5							
	Seismic	2,500-year	Undrained ²	1.0	1.2	1.1							
	Static	_	Drained	1.5	3.8	4.3							
B-B′ (Pond 004)	Statie		Undrained	1.4	7.6	6.4							
	Seismic	2,500-year	Undrained ²	1.0	1.2	1.3							
	Static	_	Drained	1.5	3.6	4.3							
C-C′ (Pond 004)	Static		Undrained	1.4	3.9	4.5							
	Seismic	2,500-year	Undrained ²	1.0	1.1	1.2							
	Static	_	Drained	1.5	2.3	3.7							
D-D′ (Pond 003)	Static		Undrained	1.4	5.0	6.3							
	Seismic	2,500-year	Undrained ²	1.0	1.2	1.3							
	Static	_	Drained	1.5	3.1	4.1							
E-E´ (Pond 003)	Static		Undrained	1.4	4.1	4.3							
	Seismic	2,500-year	Undrained ²	1.0	1.1	1.3							

1. Refer to Table III for material properties.

2. Shear strengths have been reduced by 20 percent for seismic analyses.

DISCUSSION AND RECOMMENDATIONS

The analyses associated with the safety factor assessment have been performed in accordance with the requirement of Section §257.73 of the CCR Rule. A summary of our conclusions and recommendations as they relate to the rule requirements are provided below.

• For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

The results of our subsurface investigation indicate that the impoundment dikes at the Pond 003 and Pond 004 are primarily constructed of clay soils that are not susceptible to liquefaction. Accordingly, this requirement has been met.

• The calculated static factor of safety under the long-term, maximum storage pool loading conditions must equal or exceed 1.50.

As shown in **Table VI**, the static safety factors for the long-term (drained) maximum storage pool condition are above the minimum required values for all critical sections analyzed at Pond 003 and Pond 004. Accordingly, this requirement has been met.

• The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

As shown **in Table VI**, the static safety factors for the maximum surcharge pool loading condition (undrained) are above the minimum required values for all critical sections analyzed at Pond 003 and Pond 004. Accordingly, this requirement has been met.

• The calculated seismic factor of safety must equal or exceed 1.00.

As shown in **Table VI**, the calculated seismic safety factors are above the minimum required value for all critical sections at Pond 003 and Pond 004. Accordingly, this requirement has been met.

CERTIFICATION

Based on our review of the information provided to us by AECI and the results of our field investigations and analyses, it is our opinion that the calculated factors of safety for the critical cross sections of the impoundment embankments for Pond 003 and Pond 004 meet the minimum factors of safety specified in 257.73(e)(1)(i) through (iv) of the EPA's CCR Rule.

Certification Statement – Pond 003

I certify that the Initial Safety Factor Assessment for AECI's Pond 003 at the New Madrid Power Plant meets the requirements of §257.73(e) of the EPA's CCR Rule.

Signed:

Certifying Engineer

Print Name: Missouri License No.: Title: Company:

<u>Steven F. Putrich</u> 2014035813 <u>Project Principal</u> Haley & Aldrich, Inc.

Professional Engineer's Seal:

Certification Statement - Pond 004

I certify that the Initial Safety Factor Assessment for AECI's Pond 004 at the New Madrid Power Plant meets the requirements of §257.73(e) of the EPA's CCR Rule.

Signed:

Certifying Engineer

Print Name: Missouri License No.: Title: Company: Steven F. Putrich 2014035813 Project Principal Haley & Aldrich, Inc.

Professional Engineer's Seal:

www.haleyaldrich.com

CLOSING

We appreciate the opportunity to provide engineering services on this project to AECI.

Sincerely yours, HALEY & ALDRICH, INC.

en A Shetty

Derrick A. Shelton Geotechnical Program Manager | Senior Associate

Steven F. Putrich, P.E. Project Principal

Enclosures:

References Table I – Summary of Subsurface Explorations Table II – Summary of Laboratory Test Results Figure 1 – Project Locus Figure 2 – Subsurface Exploration Location Plan Figure 3 – Geologic Column for the New Madrid Seismic Zone Figure 4 – Design Shear Wave Velocity Profile Appendix A – Test Boring Logs Appendix B – CPT Sounding Logs and Related Information Appendix C – Laboratory Test Results Appendix D - Analyses

REFERENCES

Atkinson G.M., Beresnev I.A. (2002); "Ground Motions at Memphis and St. Louis from M 7.5–8.0 Earthquakes in the New Madrid Seismic Zone", Bulletin of the Seismological Society of America, Vol. 92, No. 3, pp. 1015–1024, April 2002

Baker J.W. (2011); "Conditional Mean Spectrum: Tool for Ground-Motion Selection", J. Struct. Eng. 2011.137:322-331.

Bray J.D., T Traversarou (2007); "Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements", Journal of Geotechnical and Geoenvironmental Engineering © ASCE / APRIL 2007

Campbell, K. W. and Bozorgnia Y. (2003), Updated near-source ground motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra, Bulletin of the Seismological Society of America, 93(1), 314 -331.

Cramer C.H. (2015); "Charleston Area Earthquake Hazards Mapping Project (CAEHMP) Workshop and Pilot Study: Collaborative Research with the College of Charleston and the University of Memphis", Final technical Report-Award Number: G14AP00023 and G14AP00024, Center for Earthquake Research and Information, University of Memphis

Cushing, E.M., Boswell, E.H., and Hosman, R.L, (1964), "General Geology of the Mississippi Embayment", Department of the Interior, Geological Survey Professional Paper 448-B.

Duncan, J.M., Wright, S.G, and Brandon, T.L. (2014). Soil Strength and Slope Stability. John Wiley & Sons, Upper Saddle River, 2nd Edition, pp. 182-184.

Environmental Protection Agency, (2015), Code of Federal Regulations, "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule, "Title 40, Chapter I, Parts 257 and 261, April 17.

Federal Highway Administration (FHWA) (2011); "LRFD Seismic Analysis and Design of Transportation Geotechnical Features and Structural Foundations Reference Manual", FHWA-NHI-11-032, U.S. Dept. of Transportation

Hashash Y.M.A, D. Park (2001); "Non-linear one-dimensional seismic ground propagation in the Mississippi Embayment:, Engineering Geology 62 (2001) 185-206, Elsevier

Hynes-Griffin, M.E. and Franklin, A.G. (1984). "Rationalizing the seismic coefficient method," [Miscellaneous Paper GL-84-13]. U.S. Army Corp of Engineers Waterways Experiment Station. Vicksburg, Mississippi, 21pp.

Jibson, R.W., (2011), "Methods for assessing the stability of slopes during earthquakes—A Retrospective," Engineering Geology, v. 122, p. 43-50.

Kavazanjian, E., Jr. and Matasovic, Y.L. (1996), "YSLIP_PM – A Computer Program for Simulation of Dynamic Behavior of a Rigid Block on an Inclined Plane and Calculation of Permanent Displacement of the Block", User's Manual p. 21 (plus appendix).

Kramer, S.L., (1996). Geotechnical Earthquake Engineering. Prentice Hall, Upper Saddle River, NJ, 653 pp.

Mine Safety and Health Administration – U.S. Department of Labor (MSHA), (May 2009. Rev. August 2010). Engineering and Design Manual Coal Refuse Disposal Facilities - Second Edition.

National Earthquakes Hazard Reduction Program (2011); "Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses", NIST GCR 11-917-15

Romero S.M., G.J. Rix (2005); "Ground Motion Amplification of Soils in the Upper Mississippi Embayment", Report No. GIT-CEE/GEO-01-1, National Science Foundation, Mid Atlantic Earthquake Center, Georgia Institute of Technology

Rosenblad, B.L. (2007), "Deep Shear Wave Velocity Profiles of Mississippi Embayment Sediments Determined from Surface Wave Measurements," Research supported by the U.S.G.S., Department of Interior, under USGS award number 06HQGR0131.

Seed, H.B. and Idriss, I.M. (1982), "Ground Motions and Soil Liquefaction During Earthquakes," Monograph No. 5, Earthquake Engineering Research Institute, Berkeley, California, 134 p.

Spencer, E. (1967), "A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces," Geotechnique, Vol. 17, No. 1, pp 11-26.

Terzhagi, K., (1950), Mechanism of landslides. In: Paige, S. (Ed.), Application of Geology to Engineering Practice (Berkey Volume). Geological Society of America, New York, NY, pp. 83-123.

U.S. Army Corps of Engineers (2003), "Engineering and Design: Slope Stability," Engineer Manual EM-1110-2-1902, Department of the Army, U.S. Army Corps of Engineers, Washington, DC, October.

Van Arsdale, R.B. and TenBrink, R.K. (2000), "Late Cretaceous and Cenozoic Geology of the New Madrid Seismic Zone," Bulletin of the Seismological Society of America, 90, 2, pp. 345-356, April 2000.

\\was\Common\Projects\40616\-300 Structural Integrity Assessment\Deliverables\Letter Report\Final\2016-1017_HAI-NM Pond 003 and Pond 004 Safety Factor Assessment-F.docx

TABLE I

SUMMARY OF SUBSURFACE EXPLORATIONS ASSOCIATED ELECTRIC COOPEATIVE, INC. 003 UNLINED POND AND 004 SLAG DEWATERING POND MARSTON, MISSOURI

	Ground			Total	Water	3
Exploration Designation ¹	Surface El. ² (ft)	Northing ²	Easting ²	Exploration Depth (ft)	Depth Below Ground Surface (ft)	Elevation (ft)
HA-B1	309.3	249123.8	1096406.3	50.0	43.0	266.3
HA-B2	300.2	249425.1	1096677.9	95.0	40.5	259.7
HA-B3	308.8	247288.9	1096492.8	75.0	43.0	265.8
HA-B4	304.2	246728.8	1097737.1	95.0	13.0 ⁴	291.2
HA-B4A	304.2	246728.8	1097737.1	15.0	Not Encountered	
HA-B5	316.1	246385.4	1096344.8	50.0	43.0	273.1
HA-B5A	316.1	246385.4	1096344.8	29.0	25.0 ⁴	291.1
HA-B6	307.4	245683.4	1098768.8	75.0	40.0	267.4
HA-B7	302.9	249818.4	1096496.9	27.0	Not Encountered	
HA-C1	301.1	249768.9	1096418.4	50.0	41.0	260.1
HA-C2	309.2	249121.4	1096407.6	50.0	48.1	261.1
HA-C3	299.9	249422.8	1096674.6	95.1	41.8	258.1
HA-C4	296.5	249095.4	1096352.8	50.0	35.0	261.5
HA-C5	309.5	247296.2	1096499.1	75.1	43.4	266.1
HA-C6	296.7	247092.3	1096316.1	50.0	30.1	266.6
HA-C7	304.2	246735.4	1097740.8	95.1	41.8	262.4
HA-C8	HA-C8 315.8 246390.2		1096337.2	50.0	42.0	273.8
HA-C9	307.3	245688.2	1098766.8	75.1	47.2	260.1
HA-C10	303.0	249815.6	1096496.5	50.5	42.0	261.0

Notes:

1) Technical monitoring of subsurface explorations completed during the period 14 September 2015 through 2 September 2015 was performed by Haley & Aldrich, Inc.

2) Elevations are in feet and reference North American Vertical Datum of 1988 (NAVD88). Ground surface elevations of subsurface explorations were determined by optical survey. Survey performed by Smith & Company, Inc.
 3) Water level readings represent the highest water level observed either during drilling, after completion of the boring, or as indicated by subsurface exploration instruments. Refer to the subsurface exploration logs for additional water level data. Water level readings have been made in the subsurface explorations at times and under conditions discussed herein. However, it must be noted that fluctuations in the level of the water may occur due to variations in season, rainfall, temperature, and other factors not evident at the time measurements were made and reported.
 4) Possible perched water.

11/6/2015

TABLE II

SUMMARY OF LABORATORY TEST RESULTS ASSOCIATED ELECTRIC COOPEATIVE, INC. 003 UNLINED POND AND 004 SLAG DEWATERING POND MARSTON, MISSOURI

Desites	0	Sample	11000		Moisture				0(0/	0(Tube Dry	UU	Triaxial		Co	nsolid	ation
Designation	Number	Depth (ft)	Symbol	Type	Content (%)	LL	PL	ΡI	% Gravel	% Sand	% Fines	Density (pcf)	Moisture Content	Dry Density	Su	e _° 1	C _c ¹	P _c ¹
												,	(%)	(pcf)	(tsf)			(tsf)
HA-B1	S6	11.0-13.0	CL	Fill	22.8	42	20	22			92.7							
HA-B2	S11	28.0-30.0	SM	Natural Soil	20.7				0.0	67.9	32.1							
HA-B3	S3	5.0-7.0	CL	Fill	26.7				0.0	4.8	95.2							
HA-B3	S7	13.0-15.0	CL	Fill	22.8	47	22	25			95.5							
HA-B3	S10	28.0-30.0	СН	Natural Soil	36.1						98.4							
HA-B4	U2	5.0-7.0	ML	Boiler Slag	32.9				0	0.7	99.3	80.0				1.08	0.23	1.1
HA-B4	S15	48.0-50.0	SP	Natural Soil	18.1				0.5	95.1	4.4							
HA-B5	U1	10.0-12.0	ML	Fly Ash	38.3				0.0	1.4	98.6	71.7				1.04	0.18	2.0
HA-B5	U2	20.0-22.0	ML	Fly Ash	34.6							77.8	41.0	73.1	0.3	1.14	0.19	2.8
HA-B6	S4	7.0-9.0	CL	Fill	22.6	45	21	24			94.4							
HA-B6	S7	13.0-15.0	CL	Natural Soil	21.1	39	20	19			96.5							
HA-B7	S6	11.0-13.0	CH	Fill	22.5	59	20	39			87.3							

Notes:

1. e_o = Void Ratio, C_c = Compression Ratio, P_c = Estimated Preconsolidation Pressure

LEGEND

HA-B3 308.8 DESIGNATION, LOCATION AND GROUND SURFACE ELEVATION OF TEST BORINGS PERFORMED BY BULLDOG DRILLING, INC. OF DUPO, ILLINOIS DURING THE PERIOD 14 SEPTEMBER 2015 TO 22 SEPTEMBER 2015. DESIGNATIONS THAT INCLUDE AN "A" CORPESEDUN TO OFFECT DODINON DESESTORY CORRESPOND TO OFFSET BORINGS PERFORMED IMMEDIATELY ADJACENT TO THE ORIGINAL BORING.

HA-C6
 296.7
 DESIGNATION, LOCATION AND GROUND SURFACE ELEVATION OF CONE PENETROMETER SOUNDINGS PERFORMED BY CONETEC, INC. OF WEST BERLIN, NEW JERSEY DURING THE PERIOD 15 SEPTEMBER 2015 TO 17 SEPTEMBER 2015.

GEOLOGIC CROSS-SECTION LOCATION

APPROXIMATE POND EXTENT

NOTES

- EXPLORATION LOCATION PLAN WAS PREPARED FROM AN AERIAL IMAGE PROVIDED BY AECI THAT WAS CONDUCTED BY PICTOMETRY INTERNATIONAL CORP BETWEEN OCTOBER 4-8, 2014.
 ELEVATIONS INDICATED ON THIS DRAWING ARE IN FEET AND REFER TO NAVD 1988 DATUM. HORIZONTAL CONTROL IS BASED ON MISSOURI STATE PLANE COORDINATE SYSTEM EAST ZONE.
 TECHNICAL MONITORING OF TEST BORINGS AND CONE PENETROMETER SOUNDINGS COMPLETED DURING THE PERIOD 14 SEPTEMBER 2015 TO 22 SEPTEMBER 2015 WAS PERFORMED BY HAI EV & AL DRICH INC.
- SEPTEMBER 2015 WAS PERFORMED BY HALEY & ALDRICH, INC.
- AS DRILLED LOCATIONS AND GROUND SURFACE ELEVATIONS OF TEST BORINGS AND CONE PENETROMETER SOUNDINGS WERE DETERMINED IN THE FIELD BY SMITH & COMPANY ENGINEERS OF POPLAR BLUFF, MISSOURI BY OPTICAL SURVEY.

1000

500 SCALE IN FEET

ASSOCIATED ELECTRIC COOPERATIVE, INC. NEW MADRID POWER PLANT 003 UNLINED POND AND 004 SLAG DEWATERING POND MARSTON, MO

SUBSURFACE EXPLORATION LOCATION PLAN

SCALE: AS SHOWN FEBRUARY 2016

FIGURE 2

APPROXIMATE E	ELE	VAT	ON											
292 - 309				A	lluv.		Light gray	silty clay and sand; contains lignite.		Legend				
		nary	Pleist Holo		oess		Tan silt ar	nd clayey silt.		Major intervals with no				
		aterı	leist.	\vdash	J. C.		Ferrugino	us, fine- to very coarse-sand and gravel.	\boxtimes	samples				
115		Ŋ	leist. P	Ja Foi	ckson mation		Light gray silty sand,	interbedded with light gray clayey silt.		Sand and Gravel				
			ne P	ì	eld		Light gr	ay to light brown silt and clay		Sand				
			ligoce		Cockfi Format		interbedd lignite co	ed with medium- to fine-grained sand; mmon.		Silt				
					Cook Mtn. mation		Light gra variable a	y to light buff clay and silt; contains mounts of sand and lignite.		Clay				
-170	ic			iroup	For					Calcareous clay				
	ozou		6	me						Dolomite				
	ပိ	y	cocen	laibo	s Sand		Fine- to	very coarse-grained, light gray-white	~~	Unconformity				
		ertiar	—	ľ	mphi		fragments		Alluv	. = Alluvium				
		Te			Me				U. C. O.B.	= Upland Complex Fm. = Old Breastworks				
										Formation				
					Flour		Medium t	o light gray silty clay and clayey silt						
				Grou	Fm.		sand; cor mica	nmonly contains lignite, pyrite, and						
					Fort		Fine- to	very coarse-grained quartzose sand						
	850			950			Wil	Sand		commonly	y contains lignite, pyrite, and mica.			
-850	-850 5.				O.B. Fm	~~	Light gray	y, sandy, micaceous silty clay.						
			Pal	Grou	reek	\times	Steel-gray	to dark gray, hard, micaceous clay;	;					
				vay (ers C Clay		mottled y	ellow-buff; locally fossiliferous; pyrite						
				Midv	Port		glauconiti	c near the base.						
-1300					Fin.		Light gree interbedde	d with green-white fossiliferous clay						
				<u> </u>	Fm.	\succ	geophysica	l logs indicate it is present.						
				м	Nairy		Fine- to containin	ng pyrite, mica, and wood						
	0	0.000	cons		Sand	\times	interbedd	led with steel-gray, soft, micaceous						
	ozoi		Iclac	⊢			silty clay							
	Mes		5	Der	nopolis		Massivel	y-bedded, fossiliferous, bus, gray marls.						
		1100	ddo		matoli		Wall cort	ad loose white conde interhedded						
				C	offee		with lan	ninated to thin-bedded, brownish-						
-1600	-1600 Formation gray carbonaceous clays with clean silt partings.							igs.						
	zoic	U	pper		uwc		White t	to dark-gray, fine- to coarse-						
	aleo	Car	nbrian (?)		Inkne	44	trace vug	gy porosity; pyrite common; trace						
	д		(.)			ć, / , /	1							
NOTES										PERATIVE. INC.				
1. IMAGE REFERENC	CE: \	/AN A	RSDA	LE A	AND TI	ENBRIN	IK (2000).	NEW MADRID PONE 003 UNLINED PONE MARSTON, MO	ER PLANT AND 004	SLAG DEWATERING POND				
2. ELEVATIONS SHO	WN		SPECI	FIC	TO TH									
FROM VAN ARSDAL	VER PLAN SITE AND WERE ESTIMATED USING FIGURES DM VAN ARSDALE AND TENBRINK (2000) AND GEOLO								COLU	MN FOR THE NEW				

40616_3.PDF

ROSENBLAD (2007).

3. ELEVATIONS INDICATED ON THIS DRAWING ARE IN FEET AND REFER TO NAVD 1988 DATUM.

APPROXIMATE SCALE: AS SHOWN FEBRUARY 2016

MADRID SEISMIC ZONE

FIGURE 3

APPENDIX A

Test Boring Logs

ł	TEST BORING REPORT												Boring No. HA-B1								
Pro Clie Cor	ject ent ntracto	Sla Ass or Bul	g Dew sociate Ildog [vatering ed Elect Drilling,	Pond ric Co Inc.	and oper	Unlined ative, Inc	Pond, New Madrid Power	Plant, Marston, Mis	souri	Fil Sh St	e N neet art	o. No 2	40 0. 1 22 S	616 of ept	5-30 3 em)0 ber	20	15		
			0	Casing	Sam	pler	Barrel	Drilling Equipment	and Procedures		⊢ır Dr	nisn iller	2	.2 J. J.	Ga	tes	Dei	20	13		
Тур	е			HSA	S			Rig Make & Model: CME	55 L6		H&A Rep. C. Toscano										
Insid	de Dia	meter	(in.)	4.25	1.3	75		El	eva	tion	I N	30 14V	9.3 א ח	8							
Han	nmer V	Veight	(lb)		14	0	-	Casing: Spun	A		Lo	cati	ion	S	ee F	Plar	<u>ง</u>				
Han	nmer F	-all (in	.)		30)	-	PID Make & Model: N/A	Automatic Hammer				N I E 1	249 1,09	,12)6,4	4 .06					
(#)	Blows n.	, Č No.	el (∰	h (ff)	mbol		VISU	JAL-MANUAL IDENTIFICATION	N AND DESCRIPTION		Gra	avel		Sano	b		F	ield ي	Тез	st	
Depth	the second se												% Coars∈	% Mediur	% Fine	% Fines	Dilatancy	Toughne	Plasticity	Strength	
- 0 -								-SAND/GRAVEL ROAD	WAY FILL-												
-	3 4 4	S1 12	1.0 3.0	308.3 1.0	SM	Loo no	se brown odor, dry	to orange-brown silty SAND v	with gravel (SM) mps 20	mm,	5	10	5	20	25	35					
_	4			306.3			diuma atiff			£ _: +				L -		100				L -	
-	3 3 4 5	52 20	3.0 5.0	5.0		anc	l fine sand	y silt, mps 1 mm, no odor, m	oist)i siit						100					
- 5 -	2 3 5 5	S3 20	5.0 7.0	5.0	ML-	Loo mp	se dark br s 1 mm, no	own sandy SILT (ML) intermis o odor, moist	xed with pockets of lear	i clay,					40	60					
-	2	54	7.0	302.3 7.0	- CL -	Me	dium stiff	dark brown lean CLAY (CL), m	nps < 1 mm, no odor, m	oist						100	S	M	M	Н	
-	3 4 6	24	9.0																		
- - 10 -	3 3 5 5	S5 15	9.0 11.0		CL	Sim	ilar to S4									100	S	М	Μ	H	
-	1 2 4 4	S6 24	11.0 13.0		CL	Sim san	ilar to S4, d	except intermixed with pock	ets of silt and seams of	fine					7	93					
-	2 2 3 3	S7 24	13.0 15.0		CL	Sim san	ilar to S4, d	except intermixed with pock	ets of silt and seams of	fine						100					
- 15 - - -	1 3 4 7	S8 24	18.0 20.0	-	CL	Sim	ilar to S4,	except gray-brown								100					
- 20 -		Wa	ater Le	vel Data	a			Sample ID	Well Diagram		I	S	Sum	' nma	ry						
D	ate	Time	Elap Time	osed (hr.) ^{Bc} of C	Deptl ottom asing	h (ft) Bottor of Hol	to: m Water	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample	Riser Pipe Screen Filter Sand	Over Rock	bur Cc	den ored	(ft (ft	:) t)	5	50.0)				
9/2	2/15						43.0	S - Split Spoon Sample	Grout	Samp	nes	5 N				145 பா		1			
Field	d Tests	:		Dilatano	cy:R-I	Rapid	S - Slow M - Mediu	N - None Plastic m H - High Drv Str	ity: N - Nonplastic L - Low	M - Me	ng ledi	um n H). Н-	High	ו V - '	ПА Verv	Hia	⊥ h			
*No	te: Ma	ximum No	particle ote: S	size (m	ps) is d	letern on ba	nined by di	rect observation within the lim	itations of sampler size.	oy Hale	v &	Ald	ric	h, Ir	IC.	<i></i> y	9	-			

H&A-TEST BORING-07-1 HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT M:/GINT40616-300_TEST BORINGS-2015 (2).GPJ Nov 5, 15

F		EX				TEST BORING REPORT	E F	Bor ile	ing No.		061	.6-3(HA	-B1	L	
(ft)	Blows in.	No. (in.)	ole (ft)	m Je th (ft)	/mbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		San	z d		F	ield s	Тея	st
Depth - 05-	Sampler per 6	Sample & Rec.	Samp Depth	Stratu Chan Elev/Dep	uscs sy	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coars	% Fine	% Coars	% Mediu	% Fine	% Fines	Dilatanc	Toughne	Plasticity	Strength
- - - - 25	2 3 4 5	S9 24	23.0 25.0		CL	Similar to S4, except gray-brown -FILL-						100	S	м	М	Н
-				283.3 26.0		Note: Drill cuttings indicate alluvial soils at 26.0 ft.	+									
- - - 30 -	1 1 3 4	\$10 20	28.0 30.0		CL	Soft light brown lean CLAY (CL) with interbedded seams of fine sandy silt, mps <1 mm, no odor, wet -ALLUVIAL DEPOSITS-						100				
- - - 35	6 6 12 17	\$11 24	33.0 35.0	276.3 33.0	SM	Medium dense light brown silty SAND (SM), mps 1 mm, no odor, dry -FLUVIAL DEPOSITS-					60	40				
- - - 40	9 11 17 25	\$12 20	38.0 40.0		SM	Medium dense light brown silty SAND (SM), mps 2 mm, well stratified, no odor, dry			5	70	25					
-						-FLUVIAL DEPOSITS-										
- - - 45 -	11 11 12 14	\$13 20	43.0 45.0		SM	Similar to S12			5	80	15					
	9 10 12	S14 24	48.0 50.0		SM	Note: Drill action indicated possible gravel layer at approximately 46.0 ft. Lost approximately 100 gallons of drill fluid from 46.0 to 48.0 ft. Similar to S12			5	75	20					
	Note:	Soil ide	ntificati	on based	on vis	ual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No	l		НА	\-B1		

ł		.EY	ing	No	HA-B1											
		.DR		1		TEST BORING REPORT	F S	ile he	No. et N	4 lo.	061 3	.6-3 of	00 3			
ft)	lows 1.	No.) in.)	e (II	n e f(f)	lodn	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	ave		San	d		F	ield ഗ	Tes	st
Depth (Sampler B per 6 ir	Sample & Rec. (Sampl Depth (Stratur Chang Elev/Dept	USCS Syr	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Mediur	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
- 50 -				259.3 50.0		BOTTOM OF EXPLORATION 50.0 FT			-							-
						Note: Borehole grouted upon completion.										
<u> </u>	L															
	Note:	Soil ide	entificati	ion based	on vis	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	в	ori	ng	No	•		HA	∖-B1	-	

ŀ		EX	ICH			٦	EST	BORING REPOR	RT		E	Sor	'n	g N	lo.		HA	\-B	:2				
Pro Clie Cor	ject ent ntracto	Sla Ass or Bul	g Dew ociate Idog [atering ed Elect Drilling,	Pond ric Co Inc.	and l opera	Jnlined I itive, Inc	Pond, New Madrid Power	Plant, Marston, Miss	ouri	Fil Sh Sta	e N eet art	o. No 2	40 0. 1 21 S	of of ept	5-30 4 eml	ber	20: 20 [:]	15 15				
			0	Casing	Sam	pler	Barrel	Drilling Equipment	and Procedures		Dr	iller	. –	J.	Ga	tes							
Тур	е			HSA	S			Rig Make & Model: CME	55 L6	_	H8	ka f	Rep). C	С. То	osca	no						
Insid	de Dia	meter	(in.)	4.25	1.3	75		Drill Mud: Polymer			Ele Da	eva itum	tion า	I N	3C IAV	0.2 D 8	8						
Han	nmer V	Veight	(lb)		14	0	-	Casing: Spun	Automatic Hammor	-	Lo	cati	ion	S	ee l	lan							
Han	nmer F	all (in)		30)	-	PID Make & Model: N/A					N . E 1	249 1,09	9,42 96,6	5 78							
(Ŧ	slows n.	(in.) (in.)	e)	her her	mbol		VISU	IAL-MANUAL IDENTIFICATIO	N AND DESCRIPTION	-	Gra	vel		Sano	d	-	Fi	eld ແ	Tes	st			
Depth	Sampler E per 6 i	Sample & Rec. (Samp Depth	Stratur Chang Elev/Dept	USCS Sy		(Density	/consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPRI	AME, max. particle size*, onal descriptions ETATION)		% Coarse	% Fine	% Coarse	% Mediur	% Fine	% Fines	Dilatancy	Toughne	Plasticity	Strength			
- 0 -								SAND/GRAVEL ROAD	WAY FILL-														
-	1 2 3	S1 1.0 20 3.0		299.2 1.0	CL	Med mois	ium stiff (st, trace o	gray to gray-brown clean CLA rganic fibers	AY (CL), mps <1 mm, no c	odor,						100							
- - 5 -	3							-FILL-															
_	3 3 4 5	S2 20	3.0 5.0	-	CL	Simil	ar to S1,	except with 15% cinders and	slag particles by volume	2						100							
- 5 -	3 3 5 7	S3 24	5.0 7.0			CL	Simil	lar to S1,	except trace cinders and slag	particles							100	S	м	м	н		
-	3 4 5 9	S4 24	7.0 9.0		CL	Stiff volu	gray-brov me, mps :	vn lean CLAY (CL), 5% cinder 3 mm, no odor, moist	s and slag particles by							100							
- - 10 -	2 3 4 6	S5 24	9.0 11.0		CL	Med mois	ium stiff (st, trace o	gray to gray-brown lean CLA rganic fibers	Υ (CL), mps < 1mm, no oα	lor,						100	S	м	D15 D15 D15 D15 D15 D15 D15 D15 D15 D15	Н			
-	2 3 5 7	S6 24	11.0 13.0		CL Similar to S5											100	s	м	М	Η			
-	2 3 4 5	S7 24	13.0 15.0		CL	Simil	lar to S5									100	S	м	м	Н			
- 15 - -	2 3 3 4	S8 24	15.0 17.0		CL	Simil	lar to S5									100							
				282.2														_					
Γ				18.0		Note	e: Sands o	observed on auger flights at	approximately 18.0 to 19	.0 ft.													
F								-ALLUVIAL DEPO	SITS-														
- 20 -		10/-	atoria					O-marks ID	Well Diagram				 	 	n /								
D	ate	Time Elap		sed (hr.) Bo	Dept	h (ft) f Bottom	to: Water	Sample ID Well Diagram O - Open End Rod Riser Pipe Screen Screen T - Thin Wall Tube Notes and the screen				erburden (ft) 9						95.0					
- 15 2 S 3 2 - 4 5 - 15 2 S 3 2 - 3 4 - 3 - 3 - 3 - 4 				Joing		43.0	U - Undisturbed Sample	Cuttings	Samp	les			/		23S								
9/2	2/15	06:45					40.5		Grout Concrete Bentonite Seal	Borir	ng	No) .	_	_	HA	-B2	2	_	_			
Field	d Tests	:	1	Dilatano	y:R- ess'∣	Rapid	S - Slow M - Mediu	N - None Plastic m H - High Dry Stu	ity: N - Nonplastic L - Low	v M-Med	ediu	um רון	H - - Hi	High iah	ו V - '	Verv	Hiał	<u>ו</u>					
*No	te: Ma	ximum	particle	size (m	oss. ∟ ps) is c tificati	letermi	ned by dia	rect observation within the lim	itations of sampler size.	v Halov		ייי אוא	Iric	h In	<u>,</u>	y	, ngi						
L		INC	ne: 5	UII IUENI	uncati	on pas	seu on vi	Sudi-manual methods of th	e usus as practiced b	y maley	Óx	AIC	IC	u, In	IU.								

H&A-TEST BORING-07-1 HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT M:/GINT/40616.300_TEST BORINGS-2015 (2).GPJ Nov 2, 15

- F		EY					E	lori	ing	No).		HA	∖-B 2	2	
		.DR		1		TEST BORING REPORT	F S	ile l Shee	No. et N	4 lo.	061 2	.6-3 of	00 4			
f)	SMO .	oy (;	e (1	(H)	lodr	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel	_;	Sand	d		F	ield	Te	st
Depth (i	Sampler Bl per 6 in	Sample N & Rec. (i	Sample Depth (i	Stratum Change Elev/Depth	USCS Syn	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
- 20 - -	2 3 5 7	S9 24	20.0 22.0		SM	Loose light brown silty SAND (SM) with frequent interbedded layers of gray-brown silt, mps 1 mm, stratified, no odor, dry					60	40				
-						-ALLUVIAL DEPOSITS-										
- - - 25 -	2 4 7 10	\$10 18	23.0 25.0	23.0	CL -	Medium dense gray-brown lean CLAY (CL) with frequent interbedded seams and layers of silty fine sand, mps 1 mm, well stratified, no odor, moist					5	95				
-				274.7 25.5												
- - 30 - -	4 6 9 11	\$11 20	28.0 30.0		SM	Medium dense light brown silty SAND (SM) with interbedded seams of silt and fine sand, mps 1 mm, no odor, moist					68	32				
-	11 14 15 17	\$12 15	33.0 35.0	267.2 33.0	SP	Medium dense light brown poorly graded SAND (SP), mps 2 mm, no odor, moist				40	60					
- 35 - - -	7	\$13	28.0		SP	Similar to \$12, except with frequent seams of naturally occurring lignite			5	60	35					
- - 40 <u>-</u> -	10 11 13 7	13	40.0	_		particles to fragments										
- - - 45 -	9 10 10 13	\$14 15	43.0 45.0	257.2 43.0	sm_	Medium dense light brown silty SAND (SM) with interbedded seams of silt and fine sand, mps 1 mm, well stratified, no odor, wet					60	40				
-	2	645	40.0		SM	Medium dense dark grav silty SAND (SM), po odor, wet					60	40				
ļ	5 4 8	12	48.0 50.0	251.2			L.	L -							L -	L _
	9			49.0	58	weaturn dense gray poorly graded SAND (SP), mps 3 mm, no odor, wet			80	20						
	Note:	Soil ide	entificati	ion based	on vis	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	в	ori	ng	No			HA	∖-B 2	2	

H&A-TEST BORING-07-1 HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT M:\GINTA0616-300_TEST BORINGS-2015 (2).GPJ Nov 2, 15

1		EX	ICH	•		TEST BORING REPORT	F S	ile i hee	ng No. et N	No 4 0.). 061 3	.6-3(of	HA 00 4	-B2	2	
t)	SMO	ې د	e (j	(t)	lodi	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel	5	Sano	ġ		Fi	ield	Te	st
Depth (f	Sampler Bl per 6 in	Sample N & Rec. (ii	Sample Depth (f	Stratum Change Elev/Depth	USCS Sym	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strenath
- 50 -				-		Note: Drill action indicated possible gravel at 52.0 to 53.0 ft.										
-	6 7 8 12	\$16 12	53.0 55.0	247.2 53.0	sm	Medium dense gray silty SAND (SM), trace coarse to fine gravel, mps 2 mm, no odor, wet			5	80	15					
- 00 -						-FLUVIAL DEPOSITS-										
- - 60 –	6 6 8 9	\$17 12	58.0 60.0	242.2 58.0	SP -	Medium dense gray poorly graded SAND (SP), trace limited fragments and particles, mps 3 mm, no odor, wet			10	90						
- - - 65	7 9 10 12	\$18 14	63.0 65.0		SP	Similar to S17			30	65	5					
- - - 70 –	6 6 8 10	NR	68.0 70.0	-		Note: Drill action indicated possible gravel from 67.0 to 68.0 ft. No Recovery										
-						Note: Drill action indicated possible gravel from 71.0 to 72.0 ft.										
- - 75 -	7 8 11 10	\$19 20	73.0 75.0	-	SP	Similar to S17, trace coarse to fine gravel, mps 15 mm			10	80	5					
-	12	S20	78.0 80.0	-	SP	Similar to S17, no lignite			10	90						
ŀ		EX		1		TEST BORING REPORT	F	Bor i ile l	i ng No.	Nc 4). 1061	.6-3(на 00	-B2		
--------------------	---------------------------	----------------------------	----------------------	-------------------------------------	------------	---	----------	-----------------------	--------------------	----------------	-------------------	---------	-----------	-----------	--------------	----------
<u> </u>	Ś				-		S	shee	et N	0.	4	of	4	iold		
Depth (ft)	Sampler Blow per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft	USCS Symbo	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity a	Strength
- 80 - - 	12 15 18 23	S21 18	83.0 85.0		SP	Dense gray poorly graded SAND (SP), mps 3 mm, no odor, wet			5	90	5					
	20 14 17 18	\$22 15	88.0 90.0		SP	-FLUVIAL DEPOSITS- Note: Drill action indicated possible gravel from 87.5 to 88.0 ft. Dense gray well graded SAND with gravel (SP), mps 24 mm, no odor, wet		15	30	45	10					
-	19 21 13 23	S23 24	93.0 95.0	205.2	SP	Note: Drill action indicated possible gravel from 91.0 to 92.0 ft. Dense gray poorly graded SAND (SP), mps 3 mm, no odor, wet				80	20					
				95.0		BOTTOM OF EXPLORATION 95.0 FT Note: Borehole grouted upon completion.										
	Note:	Soil ide	ntificati	on based	on vis	ual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No	•		НА	-B2	<u> </u>	-

ľ		B R		н		•	TEST	BORING REPOR	रा		E	Bori	ing	No).	Η	A-E	B3	
Pro <u></u> Clie Cor	ject ent ntracto	Sla Ass or Bu	g Dev sociat Ildog	watering ted Elec Drilling,	g Pono tric Co Inc.	d and ooper	Unlined I ative, Inc.	Pond, New Madrid Powe	r Plant, Marston, Mis	souri	File Sh Sta Fir	e No eet art nish	D. No. 14 15	406 1 c 1 Se 5 Se	16-3 of 3 pter pter	300 nbe nbe	r 20 r 20)15)15	
				Casing	Sam	pler	Barrel	Drilling Equipmen	t and Procedures		Dri	ller		J. (Gate	S			
Type Insic Harr Han	e de Dia nmer \ nmer I	meter Veight Fall (in	(in.) (lb) .)	HSA 4.25 	1.3 1.3 14 3	5 575 40 0	 -	Rig Make & Model: CMI Bit Type: Cutting Head Drill Mud: Polymer Casing: Spun Hoist/Hammer: Winch PID Make & Model: N//	E 55 L6 Automatic Hammer		H8 Ele Da Lo	A R evati tum catio	ion on N 2	C. N/ Sec 47,2	Tos 308 AVD e Pla 289	cano 8 88 an)		
(SWO	oʻ 🔒		Ĵ. (Ĵ			VISU				Gra	vel	<u>E I</u> , S	and	<u>,49</u>	3 	ield	l Te	st
Depth (ft	Sampler Blo per 6 in.	Sample N & Rec. (in	Sample Depth (ft	Stratum Change Elev/Depth	USCS Symt		(Density	//consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPR	NAME, max. particle size*, ional descriptions ETATION)		% Coarse	% Fine	% Coarse	% Medium	% Fine % Fines	Dilatancy	Toughness	Plasticity	Ctronoth
0	13 9 5	S1 12	1.0 3.0	_	CL	Stif	f brown lea , no odor,	an CLAY with sand (CL), trace dry	e coarse to fine gravel, r	nps 25				1	15 8	5			
	7							-FILL-											
	7 3 3 4	S2 15	3.0 5.0		CL	Sim surf	ilar to S1, o ace of soil	except medium stiff, no grav sample	vel, fly ash coating on ou	ter				2	20 8	D			
5 -	2 2 3 5	S3 15	5.0 7.0		CL	Me odo	dium stiff l or, moist	brown lean CLAY (CL), trace	organic fibers, mps <1 n	ım, no				2	3 9	5			
	2 1 3 4	S4 12	7.0 9.0		CL	Sim soil	ilar to S3, o sample	except soft, mottled, fly ash	coating on outer surfac	e of									
10 -	2 1 3 4	S5 18	9.0 11.0		CL	Soft	t brown to	gray lean CLAY (CL), mps <1	. mm, mottled, no odor,	moist					10	0			
	1 2 2 3	S6 15	11.0 13.0)	CL	Soft moi	t brown lea st	an CLAY (CL), trace organic f	ibers, mps <1 mm, no oc	lor,					5 9	5			
15 -	1 1 3 4	S7 18	13.0 15.0)	CL	Soft moi	t orange-bi ist	rown to gray-brown lean CL	AY (CL), mps <1 mm, no	odor,					4 9	5			
	1 3 3 3	S8 16	17.0 19.0	289.8	CL	Me	dium stiff l	brown lean CLAY with sand ((CL), mps 1 mm, no odor	, wet				2	25 7	5			
				19.0															
20 -	1	W	ater L	evel Dat	a	1		Sample ID	Well Diagram			S	umr	nary	/	1	1		
D 9/1	ate	Time	Ela Tim	psed e (hr.) ^{Bi} of (Dept ottom Casing	th (ft) Bottor of Hol	to: Water 43.0	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample	Riser Pipe Screen Filter Sand	Overt Rock Samr	ouro Co oles	den red	(ft) (ft)		75 19	.0 - IS			
5/1 E:-'				Dilator	ev: P	Panid	S - 80	S - Split Spoon Sample	Grout Grout Concrete Bentonite Seal	Bori	ng	No). H - H	liah	Η	A-E	33		
Field	d Tests			Dilatan Toughi	cy :R- ness:L	- Kapid Low	S - Slow M - Mediu	m - None Plastic m H - High Drv St	renath N-NonplaStic L-Low	w IVI-1V M-Me	dium	ו וווג H ו	п - н - Ніо	ııg⊓ ıh ∖≀	/ - Ve	rv Hi	ah		

81 Sample No.	& Kec. (In.) Sample Denth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*,	Gra Gra	hee	et N	lo. San	2 d	of	3 Fi	eld	Тез
8 Sample No.	Sample	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*,	Gra	avel	ě	San F	d		Fi	eld	Tes
S9 18				GEOLOGIC INTERPRETATION)	% Coa	% Fine	% Coars	% Mediu	% Fine	% Fines	Dilatancy	Toughnes	Plasticity
	9 23.0 3 25.0)	CL	Note: Started mud rotary at 23.0 ft. Medium stiff light brown lean CLAY (CL), trace coarse to fine sand, mps 2 mm, no odor, wet						100			
				-ALLUVIAL DEPOSITS-									
\$10 20	0 28.0 30.0	280.8 28.0	ĊĦ	Soft brown to gray-brown fat CLAY (CH) with fine sand in occasional partings, mps 1 mm, no odor, dry					4	96	N	M	M
S11 24	1 33.0 4 35.0	275.8) 33.0	SP	Medium dense brown poorly graded SAND (SP), mps 2 mm, no odor, moist, well stratified -FLUVIAL DEPOSITS-				10	90				
\$12 20	2 38.0 0 40.0)	SP	Similar to S11, non stratified				75	25				
		267.8		Note: Drill action indicated parciple gravel at 41.0 ft	L -		Ļ.	<u> </u>					
\$13 20	3 43.0) 45.0))	sw	Dense brown well graded SAND (SW), mps 3 mm, no odor, wet (coarse to fine gravel found at top 4 in . of spoon sample)			15	60	25				
				-FLUVIAL DEPOSITS-									
	4 48.0 3 50.0)	sw	Similar to S13, except medium dense			15	55	30				
	4	48.0 50.0	48.0 50.0	48.0 50.0	48.0 SW Similar to S13, except medium dense	48.0 SW Similar to S13, except medium dense	48.0 SW Similar to S13, except medium dense	48.0 SW Similar to \$13, except medium dense 15	-FLUVIAL DEPOSITS- 15 48.0 SW SW Similar to S13, except medium dense	-FLUVIAL DEPOSITS- Image: Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense 48.0 50.0 Image: Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense	-FLUVIAL DEPOSITS- Image: SW 48.0 SW 50.0 SW Similar to \$13, except medium dense Image: SW SW Sum lar SW SW SUM SW Sum lar SW SW SW SW SW SW SUM SW SUM SW SUM SW SW SW	-FLUVIAL DEPOSITS- Image: Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense 48.0 50.0 Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense 48.0 Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense 48.0 Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense 48.0 Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense Image: Switch and Similar to S13, except medium dense	-FLUVIAL DEPOSITS- Image: SW Similar to S13, except medium dense 48.0 50.0 SW Similar to S13, except medium dense Image: SW Similar to S13, except medium dense

ŀ	Ŵ	EX				TEST BORING REPORT	B	Bor i	ing No	No). 061	6-3	HA	-B3		
	ω			•			s	shee	et N	lo.	3	of	3			
(¥)	Blow: in.	e No. (in.)	ele (#	bth (ft	ymbo	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel	e e	San	d				lest	_
Depth	Sampler per 6	Sample & Rec.	Sam Depth	Stratu Chan Elev/Dep	nscs s	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coars	% Fine	% Coars	% Mediu	% Fine	% Fines	Dilatanc	Toughne	Plasticity	olleiiyui
- 50 -																
- - - - 55	7 8 13 16	\$15 18	53.0 55.0	255.8 53.0		Medium dense gray-brown poorly graded SAND (SP), mps 2 mm, no odor, wet				20	80				_	
_						-FLUVIAL DEPOSITS-										
-	10 10 13 13	\$16 20	58.0 60.0	250.8 58.0	_sw_	Medium dense gray-brown well graded SAND (SW), mps 5 mm, no odor, wet			20	65	15					
- 60 - -	11 13 14 18	S17 22	63.0 65.0	245.8 63.0	— <u>sp</u> –	Medium dense gray-brown poorly graded SAND (SP), mps 2 mm, no odor, wet				35	65				_	
- 65 - - - 70	15 16 16 12	\$18 3	68.0 70.0		SP	Similar to S15, except dense, possibly pushing gravel (poor recovery)				20	80					
- - -	9 13 14 15	\$19 18	73.0 75.0	235.8 73.0 2 <u>33.8</u>	sw_	Medium dense gray-brown well graded SAND (SW), mps 3 mm, no			15	60	25					
<i>τ</i> σ-				75.0		BOTTOM OF EXPLORATION 75.0 FT Note: Borehole grouted upon completion to ground surface.										
	Note:	Soil ide	entificati	on based	on vis	ual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	в	ori	ng	No	•	I	HA	-B3		_

H&A-TEST BORING-07-1 HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT M:\GINT140616:300_TEST BORINGS-2015 (2).GPJ Nov 2, 15

ł		EX	ICH	1		٦	EST	BORING REPOR	RT		E	Bor	ing	j N	о.		HA	-B4	ŀ
Pro Clie Cor	ject ent ntracto	Sla Ass or Bu	g Dew sociate Ildog [vatering ed Elect Drilling,	Pond ric Co Inc.	and opera	Jnlined I itive, Inc	Pond, New Madrid Power	Plant, Marston, Miss	ouri	File Sh Sta	e N neet art	0. No 1	40 . 1 7 Se 8 Se	616 of ept	5-30 4 eml	i0 ber 2	201	5
			0	Casing	Sam	pler	Barrel	Drilling Equipment	and Procedures		⊢ır Dr	nish iller	Т	J.	Ga	tes	Jei 2	-01.	,
Тур	е			HSA	S			Rig Make & Model: CME	55 L6		Н8	sa f	Rep	. C	. то	osca	ino		
Insid	de Dia	meter	(in.)	4.25	1.3	75		Bit Type: Cutting Head Drill Mud: Polymer			Ele	eva	tion	N	30	4.2	0		
Han	nmer V	Veight	(lb)		14	0	-	Casing: Spun	A	-	Lo	cati	ion	Se	ee F	Plan	5		
Han	nmer F	⁻ all (in	.)		30)	-	PID Make & Model: N/A	Automatic Hammer				N 2 E 1	246 .,09	,72 7,7	9 37			
(H)	lows 1.	No. in.)	e (Ħ)	n e h (ff)	nbol		VISU	JAL-MANUAL IDENTIFICATION	AND DESCRIPTION		Gra	avel	S	Sanc	ł	-	Fie	ld T	est
Depth (Sampler B per 6 ir	Sample & Rec. (Sampl Depth (Stratur Chang Elev/Dept	USCS Syr		(Density	//consistency, color, GROUP N structure, odor, moisture, optic GEOLOGIC INTERPRE	AME, max. particle size*, onal descriptions ETATION)		% Coarse	% Fine	% Coarse	% Mediur	% Fine	% Fines	Dilatancy	I ougrines Diseficity	Strength
- 0 - - -	1 2 1 1	\$1 5	1.0 3.0	_	ML	Very inter slag,	loose bro bedded s mps 3 m	own to dark brown SILT with eams and layers of medium m, no odor, wet	sand (ML) with frequent to fine grained cinders a	nd					15	85			
-	2 2 1 2	S2 15	3.0 5.0	-	ML	Simi	lar to S1	-BOILER SLAG	-					5	15	80			
- 5 -	2 1 1 2	S3 12	5.0 7.0	-	ML	Simi	lar to S1								10	90			
-	1 1 1 1	S4 15	7.0 9.0		ML	Simi	lar to S1,	except no sand, wet (perche	d groundwater)						5	95			
- 10 -	′OH/2₄	1" S5 24	9.0 11.0	293.2	ML	Very spoo	loose da on dry)	rk brown SILT (ML), mps <1 n	nm, no odor, wet (outsic	e of						100			
	1 1 1 7	S6 20	11.0 13.0	11.0	SM	Very cind Note	v loose bla ers and sl e: Spoon c	ack silty SAND (SM), mps 3 m ag particles completely wet, possible pero	m, no odor, wet, contair ched groundwater.	s			40	50	10				
-	1 1 1 1	S7 15	13.0 15.0	289.2	SM	Simi	lar to S6 (natural silt found in tip of sp	oon)				20	70	10				
- 15- W	′OH/24	1" S8 24	15.0 17.0	15.0	CL	Very odo	soft brov , wet	vn lean CLAY (CL), trace woo	d particles, mps 2 mm, n	0						100			
-	1 1 2 2	S9 24	18.0 20.0	-	CL	Soft mois	brown to st	-ALLUVIAL DEPOS), mps < 1 mm, no odor,						5	95			
- 20 -		\W/	ater I c	vel Dat	 a			Sample ID	Well Diagram					me	rv				
D	ate	Time	Elap	osed (hr.) ^{BC}	Dept ottom Casing	n (ft) Bottom of Hole	to: Water	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample	Riser Pipe Screen Filter Sand	Overt Rock	ouro Co	den ored	(ft) (ft)))	_ر. ح)5.0 725			
9/1	113						13.0	S - Split Spoon Sample	Grout Grout Concrete	Bori	ng	, No).		-	HA	-B4		
Field	d Tests	:		Dilatano	cy:R-	Rapid	S - Slow M - Mediu	N - None Plastic m H - High Dry Str	Bentonite Seal ity: N - Nonplastic L - Low ength: N - None L - Low	/ M - M M - Mer	lediu	um n H	H - I	High ah	۱ ۷ - ۱	Verv	Hiah		
*No	te: Ma	ximum No	particle ote: S	e size (m oil iden	ps) is d	etermi on ba	ned by diu sed on vi	rect observation within the lim	itations of sampler size. e USCS as practiced b	v Halev	v &	Ald	Irich	. In	C.	<i></i>			

H&ATEST BORING-07-1 HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT M:/GINT40616-300_TEST BORINGS-2015 (2).GPJ Nov 2, 15

		EX DR	ICH			TEST BORING REPORT	E F	ile l	i ng No.	Nc 4). 1061	16-3(HA 00	-B4	
Depth (ft)	ampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change ilev/Depth (ft)	ISCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	6 Coarse	well avel	% Coarse	San Wedium %	% Fine 7	% Fines	Dilatancy <u>H</u>	oughness a	Plasticity al
- 20 - - - - 25 -	0 1 1 6 11	S10 24	23.0 25.0	280.2 24.0	CL 	Similar to S9 Medium dense light brown poorly graded SAND (SP), mps 2 mm, well stratified, no odor, moist -ALLUVIAL DEPOSITS-				40	60	100			
- - - - 30 -	5 6 7 10	S11 24	28.0 30.0		SP	Medium dense light brown poorly graded SAND (SP) with frequent interbedded seams and layers of dark brown silty SAND, mps 1 mm, well stratified, no odor, moist				15	85				
- - - 35 - -	3 4 7 8	S12 24	33.0 35.0		SP	Similar to S11				10	90				
- 40 -	7 8 13 19	\$13 20	38.0 40.0	266.2 38.0	SP	Medium dense light brown poorly graded SAND (SP), mps 2 mm, no odor, moist -FLUVIAL DEPOSITS-				40	60				
- 45 -	8 10 11 12	\$14 18	43.0 45.0	41.0	SW	Medium dense light brown well graded SAND (SW), mps 3 mm, no odor, wet			20	65	15				_
	10	\$15	48.0	256.2 48.0	— <u>sp</u> —	Medium dense light brown poorly graded SAND (SP), mps 2 mm, no			2	63	31	4			

								- II O	NIA	1	061	6-20	nn			
	(0			•			Ś	Shee	et N	4 lo.	3	of	4			
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium 8	% Fine	% Fines	Dilatancy	Toughness a	Plasticity sa I	Strenath
50 -																
55 -	7 7 10 12	\$16 20	53.0 55.0	251.2 53.0	_sw_	Medium dense light brown well graded SAND (SW), mps 5 mm, no odor, wet, trace fine gravel			20	65	15					_
						-FLUVIAL DEPOSITS-										
60 -	7 10 10 12	\$17 18	58.0 60.0	246.2 58.0	SP -	Medium dense light brown poorly graded SAND (SP), mps 10 mm, no odor, wet, trace coarse to fine gravel			5	90	5				_	_
65 -	10 10 16 18	\$18 24	63.0 65.0		SP	Similar to \$17				60	40					
70 -	10 10 12 13	\$19 6	68.0 70.0	236.2 68.0	sw	Medium dense light brown well graded SAND (SW), mps 5 mm, no — — – odor, wet, trace fine gravel			20	60	20					_
75-	16 17 18 22	S20 18	73.0 75.0	2 <u>31.2</u> 73.0	— <u>sp</u> –	Dense gray-brown poorly graded SAND (SP), mps 2 mm, stratified, no odor, wet				60	40					_
						Note: Drill action indicated possible occasional gravel layers up to 12 in. thick from 77.0 to 81.0 ft.										

ŀ		EX		1		TEST BORING REPORT	F	Bor i ile l	i ng No. et N	No 4 0.	0. 061 4	.6-3(of	HA	-B4		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium 8	% Fine	% Fines	Dilatancy	Toughness a	Plasticity Lest	
- 80 - - -																
- - - 85 -	11 10 9 10	\$21 20	83.0 85.0		SP	Medium dense gray poorly graded SAND (SP), trace coarse to fine gravel, mps 20 mm, no odor, wet			10	75	15					
-						-FLUVIAL DEPOSITS-										
- - - 90 -	9 10 11 17	522 18	88.0 90.0	216.2 88.0	_s₩_	Medium dense gray well graded SAND (SW), trace coarse gravel, mps 20 mm, no odor, wet		5	45	40	10					_
-	10 14 12 15	\$23 20	93.0 95.0	200.2	sw	Similar to S22			55	35	10					
- 95 -				95.0		BOTTOM OF EXPLORATION 95.0 FT Note: Borehole grouted upon completion. Pushed four undisturbed shelby tube samples in offset hole. See Test Boring Report HA-B4A for details.										
	Note:	Soil ide	entificati	on based	on vis	ual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No.	•		НА	-B4		_

F		EX		н		٦	rest	BORING REPO	RT		E	301	rinç	g N	0.	I	HA-	B4	Α
Proj Clie Con	ect nt tracto	Sla As: or Bu	ig Dev socia [:] Ildog	watering ted Elect Drilling,	g Pond tric Co Inc.	l and opera	Unlined I ative, Inc	Pond, New Madrid Powe	r Plant, Marston, Mis	souri	Fil Sh Sta	e N leet art	lo. : No 1	40 0. 1 .7 S	616 of ept	5-30 1 eml	0 ber	201	15
				Casing	Sam	pler	Barrel	Drilling Equipmer	t and Procedures		Fir Dr	nish iller	1	.8 S J.	ept Ga	emi tes	ber i	201	.5
Гуре	9			HSA	S			Rig Make & Model: CM	E 55 L6		Hð	λA Ι	Rep). C	с. то	osca	no		
nsid	le Dia	meter	(in.)	4.25	1.3	75		Bit Type: Cutting Heac Drill Mud: Polymer	1		El Da	eva atur	tion n	I N	30 IAV	4.2 D 8	8		
lam	imer V	Veight	(lb)		14	0	-	Casing: Spun Hoist/Hammer: Winch	Automatic Hammer		Lo	cat	ion	S	ee F	Plan			
lam	mer F	all (in	.)		30		-	PID Make & Model: N/	Α		0		<u>E 1</u>	240 1,09	97,7	37 37			_
ŧ	Blow in	e No.	ple (ff)	oth (ft	ymbo		VISU	IAL-MANUAL IDENTIFICATIO	IN AND DESCRIPTION		Gra	avei	e e	Sand Ę			€ ج	sig I	
Depth	mpler per 6	ample Rec.	Sam	Strati Chan	scs s		(Density	structure, odor, moisture, opt	NAME, max. particle size*, ional descriptions		Coars	Fine	Coars	Medi	Fine	Fines	latanc	: : inghne	asticit
0 +	Sal	ഗ്∝			ŝ	Not		d to shelby tube sampling d	enths without collecting	snlit-	%	%	%	%	%	%		- i	ã
						spoo	on sample	s.		spiit-									
	P	U1	3.0	_	ML	Brov	wn SILT (N	1L)											
	S H	12	5.0																
5 -	P	U2	5.0	_	ML	Darl	k brown Sl	ILT (ML)											
	U S	24	7.0					. ,											
	Н																		
	P U	U3 0	7.0 9.0			Nof	Recovery												
	S H																		
	Р	U4	9.0	_		No F	Recovery												
10 -	U S н	0	11.0																
-				_															
15 -				289.2 15.0				BOTTOM OF EXPLORAT	TION 15.0 FT								_	+	_
						Note	e: Borehol	le grouted upon completion	. See Test Boring Report	HA-									
						B4 f	or additio	nal details.											
		W	ater I	evel Dat	 a			Sample ID	Well Diagram				 Sum	Ima	rv				
Da	ate	Time	Ela	psed	Dept	h (ft)	to:	O - Open End Rod	Riser Pipe	Overl	bur	den	(ft)	.,	15.0)		
			Tim	e (hr.) ^{Bo}	Casing	of Hole	Water	T - Thin Wall Tube U - Undisturbed Sample	Filter Sand	Rock	Со	rec	l (ft)					
9/18	8/15						Dry	S - Split Spoon Sample	Grout	Samp		; ••				40	D 4	^	
						D			Bentonite Seal	Bori	ng	N).	1.852	ا	٦A-	·B4	4	
Field	Tests	:		Dilatan Toughr	cy:R- ness:L	Rapid - Low	S - Slow M - Mediu	N - None Plasti m H - High Dry St	city : N - Nonplastic L - Lo t rength : N - None L - Low	w M-N M-Me	1edii diun	um n H	н I Ні	High igh	ו V - V	Very	High		

ł	쉆	EX	ICH	1			TEST	BORING REPOR	RT		E	Bor	inę	g N	о.		HA	-B5	
Pro Clie Cor	iject ent ntracto	Sla Ass or Bul	g Dew sociate Ildog [vatering ed Elect Drilling,	Pond ric Co Inc.	l and oper	Unlined ative, Inc	Pond, New Madrid Power	r Plant, Marston, Miss	souri	Fil Sh Sta Fir	e No leet art hish	o. No 1 1	40 0. 1 .5 So .5 So	616 of epte	5-30 2 eml eml	00 ber 2 ber 2	2015	;
<u> </u>			- (Casing	Sam	pier	Barrel	Drilling Equipment			Dr	iller	Jon	J.	Ga	tes	no		
Тур	e			HSA	S			Bit Type: Cutting Head	55 LO		Fl		tion). C	31	6 1			
Insi	de Diai	meter Noight	(in.)	4.25	1.3	75		Drill Mud: Polymer			Da	atum	1	N	AV	D 8	8		
Han	nmer F	all (in	(IU)		20	n N	-	Hoist/Hammer: Winch	Automatic Hammer		Lo	cati	on N 2	Se 246	ee F ,38	Plan 5			
	<u>ایا اور</u>		.,	 F			-	PID Make & Model: N/A	N		Gra	avel	E 1	L,09 Sano	6,3	45	Fie		
Depth (ft)	Sampler Blow per 6 in.	Sample No & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (fi	USCS Symbo		VISL (Density	JAL-MANUAL IDENTIFICATION //consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPRI	N AND DESCRIPTION IAME, max. particle size*, onal descriptions ETATION)		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Plasticity	Strength
- 0 -	5	S1	1.0	-	ML	Me	dium dens	se black SILT with sand (ML),	mps 2 mm, no odor, dry						25	75			
-	77	20	3.0					-FLY ASH-											
-	9 4 4	S2 24	3.0 5.0	-	ML	Sim	ilar to S1,	except loose							25	75			
- 5 -	5 4 2	\$3	5.0	-	ML	Sim	ilar to S1,	except very loose						10	30	60			
_	2 2 2	20	7.0																
-	2 1 2 2	S4 18	7.0 9.0		ML	Ver fine spo	y loose bro sand, mp on)	own to dark brown SILT (ML) s 1 mm, no odor, moist, trac	interbedded with seam e organic fibers (wet at t	s of ip of					10	90			
- - 10 -	1 1 2 2	S5 18	9.0 11.0	-	ML	Sim	ilar to S4,	except wet to moist							10	90			
-	1 1 1 1	S6 18	11.0 13.0	-	ML	Sim fine	ilar to S4, sand, mp	except with frequent interbe s 2 mm, wet	edded seams of medium	to					20	80			
-	1 1 1 1	S7 20	13.0 15.0	-	ML	Sim	ilar to S4								10	90			
- 15 - -	WOH 1 1 1	S8 24	15.0 17.0	-	ML	Sim Not gro	ilar to S4 e: Sample undwater.	e moist to wet throughout er	tire sample. May be pe	rched					10	90			
-	WOH 1 2	S9 16	17.0 19.0	299.1 17.0		Sim (bo	ilar to S4, iler slag pa	except with interbedded lay articles), mps 2 mm	ers of coarse to fine sand	4k				15	25	60	- +	+	
	1							-FLY ASH/BOILER	SLAG-										
	4 1	S10 18	19.0 21.0		ML	Sim	ilar to S4,	except moist to wet							10	90			
- 20 -		Wa	ater Le	vel Data	a	1		Sample ID	Well Diagram			S	Sum	ima	ry		1	1	
	ate	Time	Elap Time	sed (hr.) ^{Bc} of C	Dept ottom asing	h (ft) Bottor of Hol	to: ⁿ Water	O - Open End Rod T - Thin Wall Tube	Riser Pipe Screen Filter Sand	Overt Rock	our Co	den ored	(ft (ft) :)	5	50.0			
9/1	.5/15						43.0	S - Split Spoon Sample	Grout	Samp	oles	; 				19S	DF		
F :-1	d Tect			Dilator		Panid	S. Slow	N - None Disetic	Bentonite Seal			INC Im). H -	High	1	ΠA	-05		
Fiel	d Tests	vinum	nantial-	Toughn	:y: K - <u>ess: L</u> ne\ic -	- Low	S - Slow <u>M - Mediu</u>	IN - None Plastic Im H - High Dry Sti	rength: N - None L - Low	M - Me	diun	<u>n H</u>	- Hi	igh	۱ ۷ - ۱	Very	High		
	nc. Ivid	No	te: S	oil iden	tificati	on ba	ased on vi	isual-manual methods of th	ne USCS as practiced b	y Hale	y &	Ald	rict	h, In	c.				

H&A-TEST BORING-07-1 HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT M:/GINT40616-300_TEST BORINGS-2015 (2).GPJ Nov 2, 15

1		D A	RICH	•		TEST BORING REPORT	E F S	ile he	ing No. et N	No 4 10.). 1061 2	.6-3(of	HA 00 2	-B5	;	
£	SWO .	ġ.	a (II)	(t)	lodr	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		San	d		F	ield	Tes	st
Depth (1	Sampler Bl per 6 in	Sample h & Rec. (i	Sample Depth (1	Stratum Change Elev/Depth	USCS Syn	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
- 20 · - -	2 1 2 3 1	S11 18	21.0 23.0	_	ML	Very loose brown to dark brown SILT (ML) with frequent interbedded layers of black coarse to fine grained cinders and slag particles, mps 3 mm, no odor, wet					5	95				
-	1 1 1 2	S12 18	23.0 25.0	-	ML	-FLY ASH/BOILER SLAG- Similar to S11					5	95				
- 25 ·	3 1 2 1	\$13 18	25.0 27.0	-	ML	Similar to S11					5	95				
-		\$14 24	27.0 29.0	-	ML	Similar to S11					5	95				
- - 30 ·	1 WOH WOH - 1 1	\$15 24	29.0 31.0		ML	Similar to S11					5	95				
-		516	22.0	284.1 32.0	СН	Medium stiff gray fat CLAY with fine sand in frequent partings (CH) mps					5	95	5	М	м	н
- - - 35 -	2 4 4 7	24	33.0	-		1 mm, no odor, moist										
						-ALLUVIAL DEPOSITS-										
	3 4 4 7	\$17 24	38.0 40.0	-	СН	Similar to S16 Note: Medium to fine sand found in tip of spoon.					5	95	S	М	м	н
- 40 ·				276.1 40.0												
	14 20	S18 20	43.0 45.0	-	SP	Dense light brown poorly graded SAND (SP), mps 3 mm, no odor, wet				80	20					
- 45	18 16			-												
						-FLUVIAL DEPOSITS-										
	15 12 14 26	\$19 15	48.0 50.0		SP	Similar to S18				80	20					
	Note:	Soil ide	entificat	ion based	l on vis	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	в	ori	ng	No			HA	\-B5	;	_

	F		EY		_			E	Bor	ing	g No).		HA	-B5	5	
			.DR		1			F	ile She	No et l	. 4 No.	1062 3	16-3 0f	00 _2			_
ĺ	Ê	lows.'.	No.	e []	n e fft)	nbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	ave	I	San	d	_	F	ield ဖွ	Tes	st
6	neptn (Sampler B per 6 ir	Sample & Rec. (Sampl Depth (Stratur Chang Elev/Depti	USCS Syr	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Mediun	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
- 5	50 -				266.1 50.0		BOTTOM OF EXPLORATION 50.0 FT	_									
	50 -				<u> <u> </u> <u></u></u>		BOTTOM OF EXPLORATION 50.0 FT Note: Borehole grouted to 65 ft upon completion. Pushed three shelby tube samples in offset hole at depths of 10.0 to 12.0 ft, 20.0 to 22.0 ft, and 27.0 to 29.0 ft. See Test Boring Report HA-B5A for details.				20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
		Note:	Soil ide	entificat	ion based	l on vis	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No	-		HA	A-B5	;	

H&A-TEST BORING-07-1 HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT M:/GINTH40616.300_TEST BORINGS-2015 (2).GPJ Nov 2, 15

F		EX		н		-	TEST	BORING REPOR	RT			E	3or	inç	j N	0.	H	IA-E	85/	4
Proj Clie Con	ect nt tracto	Sla As: r Bu	g Dev sociat Ildog	waterin ted Elec Drilling	g Pono ctric Co ;, Inc.	d and oopera	Unlined I ative, Inc.	Pond, New Madrid Powe	r Plant, I	Marston, Mis	souri	Fil Sh Sta Fir	e No Jeet art	o. No 1	40 . 1 6 Se 6 Se	616 of epte	-300 2 emb emb) er 2 er 2	015 015	5
				Casing	Sam	pler	Barrel	Drilling Equipmen	t and Pro	ocedures		Dr	iller		J.	Gat	tes			
Туре	9			HSA	9	5		Rig Make & Model: CME	55 L6			H8	×A F	Rep	. C	. To	sca	no		
Insid	le Dia	meter	(in.)	4.25	1.3	575		Drill Mud: Polymer				Ele Da	eva atun	tion n	N	31 AVI	6.1 2 88	3		
Ham	imer V	Veight	(lb)		14	40	-	Casing: Spun Hoist/Hammer: Winch	Automat	ic Hammer		Lo	cati	ion	Se	e P	lan			
Ham	mer H	all (in	.)		3	0	-	PID Make & Model: N/A	4			_		<u>E 1</u>	.,09	<u>6,3</u>	45			
(Ħ	Blow: in.	(in.)	ele (#	, € ge ⊒ ,	변 역 VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION								avel	e	Sanc E	1	-	Fiel		est
Depth	Sampler per 6	Sample & Rec.	Samp Depth	Stratu Chang	JSCS S		(Density	/consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPR	IAME, ma onal desc ETATION	x. particle size*, riptions)		% Coars	% Fine	% Coars	% Mediu	% Fine	% Fines	Dilatancy	Plasticity	Ctronoth
0 -	<u></u>					Not spor	e: Augereo on sample	d to shelby tube sampling de s.	epths with	nout collecting	split-								1	
5 -	P U S H	U1 24	10.0		ML	Brov	wn to dark	: brown SILT (ML)												
15 –																				
20			ator I		ta			Samala ID	\\/o						ma					
D	ate	Time	Ela	psed	Dep	th (ft)	to:	O - Open End Rod		Riser Pipe	Over	bur	den	(ft)	2	9.0			
			Tim	e (hr.) ^E	Casing	botton	Water	T - Thin Wall Tube		Filter Sand	Rock	Co	red	(ft)					
9/1	6/15						25.0	S - Split Spoon Sample		Cuttings Grout Concrete	Sam Bori	oles ng	Nc).		: +	3U IA- I	B5A	•	
Fiold	Teste			Dilatar	רע: R -	Rapid	S - Slow	N - None Plastic	📖 xity: N - N	Bentonite Seal	w M-N	/edir	um	H - 1	Hiah	-				
	10315	•		Tough	ness: L	Low	M - Mediu	m H - High Dry St	rength: N	- None L - Low	M - Me	diun	<u>і Н</u>	- Hi	gh	V - V	/ery I	ligh		

ŀ	Ŵ	EX				TEST BORING REPORT	E	Bor i	ing	No).	6 21	HA-	B5/	4	
	Ω						S	Shee	et N	0.	2	of	2			
(ŧ	Blow: in.	in.)	(ff)	um ge th (ft)	/mbo	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra o	avel	e (San E	d		F	ield S	Tes	t
Depth	Sampler per 6	Sample & Rec.	Samp Depth	Stratu Chan Elev/Dep	uscs sy	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coars	% Fine	% Coars	% Mediu	% Fine	% Fines	Dilatancy	Toughne	Plasticity	Strength
- 20 -	P U	U2 24	20.0 22.0		ML	Brown to dark brown SILT (ML)										
-	S H															
-																
-																
-																
- 25	7															
	P U	U3 8	27.0 29.0		ML	Brown to dark brown SILI (ML) Poor recovery due to the presence of cinders and boiler slag.										
	H			287.1												
_				29.0		BOTTOM OF EXPLORATION 29.0 FT										
						Note: Borehole grouted upon completion. See Test Boring Report HA- B5 for additional details.										
																_
	Note:	Soil ide	ntificati	on based	on vis	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	в	ori	ng	No			HA	B5/	1	

ł		B R	ICH	4		1	EST	BORING REPOR	RT		B	or	ing	g No		ŀ	IA-I	B6	
Pro Clie Cor	ject ent ntracto	Sla Ass or Bul	g Dew ociate Ildog I	vatering ed Elect Drilling,	Pond ric Co Inc.	and l opera	Jnlined tive, Inc	Pond, New Madrid Power	r Plant, Marston, Miss	ouri	File Sh Sta	e No eet art	D. No 1	406 1 c 6 Se	16- of S	300 3 mbe	er 20)15	
			(Casing	Sam	pler	Barrel	Drilling Equipment	t and Procedures		Fir Dri	lish Iler	T	7 Sel J. (Gat	es	!r 20	112	
Тур	е			HSA	S			Rig Make & Model: CME	55 L6		H8	AF	٦ep	. C.	Tos	scan	0		
Insid	de Dia	meter	(in.)	4.25	1.3	75		Bit Type: Cutting Head Drill Mud: Polymer			Ele	evat	tion	NZ	307	'.4			
Han	nmer V	Veight	(lb)		14	0	-	Casing: Spun	A	-	Lo	cati	on	See	e Pl	an			
Han	nmer F	all (in	.)		30)	-	PID Make & Model: N/A	Automatic Hammer				N 2 E 1	245,6 .,098	583 ,76	9			
(H)	lows. .r	No. in.)	e (ff)	n e h (ft)	nbol		VISU	JAL-MANUAL IDENTIFICATIO	N AND DESCRIPTION	1	Gra	vel	S	Sand	_	_	Field	J Te	st
Depth (sampler B per 6 ir	Sample & Rec. (Sampl Depth (Stratur Chang Elev/Dept	JSCS Syl		(Density	//consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPRI	IAME, max. particle size*, onal descriptions ETATION)		% Coarse	% Fine	% Coarse	% Mediur		% FINES	Toughnes	Plasticity	Strength
- 0 -	0							SAND/GRAVEL ROA	DWAY-		-	-	_		+		+	+	-
-	6	<u>\$1</u>	1.0	306.4	CL	Stiff	light brov	vn lean CLAY (CL), mps 1 mm	n, no odor, dry					1	0 9	90	+	-	-
-	6 24 3.0 9 13FILL-																		
_	13 5 S2 3.0 5 S2 3.0 CL Stiff gray lean CLAY (CL) interbedded with layers of brown SILT with sand (ML), mps 1 mm, no odor, dry 6 7 7 7									ו				1	09	90			
- 5 -	3 3 5 8	S3 24	5.0 7.0	_	CL	Med no o	ium stiff dor, dry	gray lean CLAY with sand (CL), mps < 1 mm, no struct	ure,				1	.5 8	85			
-	3 3 6 8	S4 24	7.0 9.0	-	CL	Med no o	ium stiff dor, dry	gray lean CLAY with sand (CL), mps <1 mm, no structi	ıre,					5 9	94			
- - 10 -	3 6 6 8	S5 24	9.0 11.0	_	CL	Stiff	light brov	vn lean CLAY with sand (CL),	mps 1 mm, no odor, dry					1	.5 8	35			
-	3 4 6 9	S6 24	11.0 13.0	296.4 11.0	CL	Stiff	gray lean	CLAY (CL), mps <1 mm, strat -ALLUVIAL DEPO	ified, no odor, dry SITS-						1	00			
-	6 7 6 9	S7 24	13.0 15.0	_	CL	Stiff	gray lean	CLAY (CL) with sand and fine	e sand in frequent partin	gs				:	3 9	97			
- 15 - - -	4 5 9 9	S8 24	15.0 17.0	-	CL	Simi	lar to S7,	trace organic fibers						!	5 9	95			
- - - 20 -																			
		Wa	ater Le	evel Data	a Dent	h (ft) (to:	Sample ID	Well Diagram			S	um	imary	1				
D	ate	Time	Time	(hr.) Bo	ottom	Bottom of Hole	Water	O - Open End Rod T - Thin Wall Tube	Screen Filter Sand	Overb Rock	ouro Co	len red	(ft) (ft)))	75	5.0			
9/1	6/15						40.0	S - Split Spoon Sample	Grout Concrete	Samp Borir	les 1g	Nc).		2 	0S IA-	B6		
Field	d Tests	:		Dilatano	y : R -	Rapid	S - Slow	N - None Plastic	Bentonite Seal	M - M	ediu	im .	H -	High		00.11			
*No	te: Ma	ximum No	particle	size (m	ess: ∟ ps) is d tificati	- ∟ow letermi on ha∘	ned by dia sed on vi	rect observation within the lim sual-manual methods of th	nitations of sampler size.		1011 1 &	hIA		yıı v	- V	сıуН	ign		

H&A-TEST BORING-07-1 HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT M:/GINT40616-300_TEST BORINGS-2015 (2).GPJ Nov 2, 15

	H	ЕБ	Ř	ICH			TEST BORING REPORT	E F S	Bori ile I Shee	i ng No. et N	No 4 Io.). 061 2	.6-3 of	на 00 3	≀-В€	5	
L.	y DWS	<u>o</u>	<u>;</u>		(ft)	bol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		San	d		F	ield	Tes	st
Denth (f	Sampler Blo	Sample N	& Rec. (ii	Sample Depth (f	Stratum Change Elev/Depth	USCS Sym	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 20	0 10 10 12 15) S!) 2 [,]	9 4	20.0 22.0		CL	Medium stiff gray lean CLAY (CL) with frequent interbedded layers of fine sand (SM), mps 1 mm, no odor, moist					60	40				
_							-ALLUVIAL DEPOSITS-										
- 25 -	5 3 3 4 4	S1 2	.0 4	25.0 27.0		CL	Medium stiff brown lean CLAY (CL) with interbedded layers and seams of silty sand, mps 1 mm, no odor, moist					5	95				
-	2 1 1 2	S1 24	1 4	28.0 30.0		CL	Note: Switched to mud rotary at 20.0 ft. Very soft yellow-brown to brown lean CLAY (CL), mps < 1 mm, no odor, moist						100				
- 30 - -			2	22.0	276.4 31.0		Loose light brown poorly graded SAND (SP) with occasional layers of				20						
3PJ Nov 2, 15 	4 5 1()	8	35.0	270 4		silt, mps 2 mm, well stratified, no odor, dry										
DRINGS-2015 (2).0	7	S1 20	.3 D	38.0 40.0	37.0	SP	Medium dense light brown poorly graded SAND (SP), mps 2 mm, stratified, no odor				60	40					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 12 9	S1	4	43.0 45.0		SP	Note: Wet at tip of spoon. -FLUVIAL DEPOSITS- Similar to S13				90	10					
DRING-07-1 HA-LIB09.GLB HA-TB+CORE+W	8 12 5 	,) 	.5	48.0 50.0		SP	Similar to S13				90	10					
H&A-TEST B	Not	e: Soil	ide	ntificati	on based	on vis	ual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No	•		HA	₹-B€	, ,	

ŀ		БĂ				TEST BORING REPORT	E F	Bor ile	ing No.	No). 1061	.6-3(HA	-B6	;	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	Shee avel % Line %	% Coarse	0. Sand Wedium 80	% Fine P	% Fines Jo	Dilatancy _H [©]	Toughness pi	Plasticity Les	Strength 7
- 50 - - - - 55 -	13 13 13 16	\$16 18	53.0 55.0		SP	Similar to S13 -FLUVIAL DEPOSITS-				80	20					
- - - 60 -	9 9 15 17	\$17 18	58.0 60.0	249.4 58.0	¯s₩¯	Medium dense light brown well graded SAND (SW), trace fine gravel, mps 5 mm, no odor, wet			20	60	20					_
- - - 65 -	10 11 13 15	\$18 18	63.0 65.0		SW	Similar to S17, except trace shell fragments, stratified			25	60	15					
- - - 70 -	10 11 8 11	\$19 12	68.0 70.0		SW	Similar to S17, well stratified			25	55	20					
- - - 75 -	10 10 15 13	\$20 15	73.0 75.0	232.4 75.0	sw	Similar to S17, except trace coarse to fine gravel, mps 20 mm BOTTOM OF EXPLORATION 75.0 FT Note: Borehole grouted upon completion.			35	55	10					
	Note:	Soil ide	ntificati	on based	l on vis	ual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	 B	ori	ng	No			HA	B6		

ł		B R	ICH	•		7	FEST	BORING REPOR	RT		E	Bor	ing	j N	0.		НА	-B7	7
Pro Clie Cor	ject ent ntracto	Sla Ass or Bul	g Dew sociate Ildog [vatering ed Elect Drilling,	Pond ric Co Inc.	and opera	Unlined ative, Inc	Pond, New Madrid Powe 	r Plant, Marston, Miss	souri	Fil Sh Sta	e N leet art	o. No 2 2	40 . 1 2 So	616 of ept	5-30 2 eml	ber	201	5
			C	Casing	Sam	pler	Barrel	Drilling Equipmen	t and Procedures		Fir Dr	iller	2	د 2 J.	Ga	tes	JEI	201	J
Тур	е			HSA	S			Rig Make & Model: CM	55 L6		Hð	ka f	Rep	. C	. то	osca	no		
Insid	de Dia	meter	(in.)	4.25	1.3	75		Drill Mud: Polymer			Ele	eva itum	tion า	N	30 AV	2.9 D 8	8		
Han	nmer V	Veight	(lb)		14	0	-	Casing: Spun Hoist/Hammer: Winch	Automatic Hammer		Lo	cati	ion	Se	ee F	lan			
Han	nmer F	all (in	.)		30)	-	PID Make & Model: N/A	4		-		E 1	,09	,81 6,4	。 97			
(Ħ	Blows in.	: No.	(£)	t) t) t)	/mbol		VISU	JAL-MANUAL IDENTIFICATIO	N AND DESCRIPTION		Gra v	avel	<u>ہ</u>	Sand	1		Fie	eld T	est
Depth	Sampler I per 6	Sample & Rec.	Samp Depth	Stratu Chan Elev/Dep	uscs sy		(Density	//consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPR	IAME, max. particle size*, onal descriptions ETATION)		% Coars	% Fine	% Coars	% Mediu	% Fine	% Fines	Dilatancy		Strength
- 0 -	12 12	S1 15	1.0 3.0	-	SM	Mec cont	lium dens ains cinde	e black silty SAND (SM), mps ers and slag particles	s 2.0 mm, no odor, dry,					30	50	20			
-	7 4			300.4		\		-FILL								100	-+		
-	3 5 5 5	S2 20	3.0 5.0		CL	Stiff Stiff part	gray lean gray lean icles, mps	CLAY (CL), trace cinders and CLAY (CL) intermixed with c 15 mm, no odor, dry	slag, mps 4 mm, no odd inder and slag fragments	or, dry s to		5	5	10	20	60			
- 5 -	3 4 7 8	S3 20	5.0 7.0		CL	Simi	lar to S2,	mps 5 mm					5	5	5	85			
-	3 4 6 7	S4 24	7.0 9.0	-	CL	Simi	lar to S2						10	5	5	80			
- - 10 -	2 4 4 6	S5 20	9.0 11.0		CL	Simi 3 mi	lar to S2, m	except medium stiff, trace ci	inders and slag particles,	mps						100			н
-	3 4 7 8	S6 24	11.0 13.0	291.9 11.0	ĊH -	Mec	lium stiff	gray-brown fat CLAY with sa	nd (CH), no odor, dry	·					13	87	_		H
-	2 4 6 6	S7 24	13.0 15.0		СН	Simi	lar to S6,	except gray to gray-brown, r	no cinders and slag							100			н
- 15 - -	2 3 3 3	S8 24	15.0 17.0		СН	Simi	lar to S6,	except medium stiff								100			н
-	1 1 2 3	S9 24	17.0 19.0		СН	Simi	lar to S6,	except moist, soft								100			
-	1	\$10 24	19.0	283.9	CL	Very	soft lean	n CLAY (CL), mps < 1 mm, no	odor, wet						10	90			-
<u>- 20 -</u>	-	 Wa	ater Le	vel Data	a a			Sample ID	Well Diagram			S	l Sum	ma	rv				
D	ate	Time	Elap Time	sed (hr.) ^{Bc} of C	Dept ottom Casing	h (ft) Bottom of Hole	to: Water	O - Open End Rod T - Thin Wall Tube	Riser Pipe Screen Filter Sand	Over Rock	bur Co	den red	(ft (ft)	2	27.0			
9/2	2/15						Dry	S - Split Spoon Sample	Grout	Samp	oles	N.				12S	D	,	
Field	1 Tests	:		Dilatano		Rapid	S - Slow	N - None Plastic	Bentonite Seal		19 1edii	un (л. Н-	High	1	пA	-0/		
*No	te: Ma	ximum	particle	Toughn	ess: L ps) is c	- Low	M - Mediu	Im H - High Dry Sti rect observation within the lin	rength: N - None L - Low nitations of sampler size.	M - Me	diun	n H	- Hi	gh	V - V	Very	High		
		No	ote: S	oil iden	tificati	on ba	sed on vi	isual-manual methods of th	ne USCS as practiced b	y Hale	y &	Ald	rich	n, In	c.				

H&A-TEST BORING-07-1 HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT M:/GINT40616-300_TEST BORINGS-2015 (2).GPJ Nov 2, 15

ł	公	EX			TEST BORING REPORT	E	3or ile	ing No	j Nc). 1061	.6-3	НА 00	\-В7	7		
	0			-			s	he	et N	No.	2	of	2			
£	Silows	., Na S.⊆	e (E	h (ff)	loqu	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	ave		San	d		F	ield	Tes	st
Depth (Sampler B per 6 ir	Sample & Rec. (Sampl Depth (Stratur Chang Elev/Deptl	USCS Syr	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Mediun	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
- 20 -	1															
-		C11	21.0	281.9	-sm-	Loose brown silty SAND (SM) mps 1 mm well stratified no odor dry	<u> </u>	┣.	+.	+	60	10	<u> </u>		<u> </u>	<u> </u>
	2	24	21.0	21.0	5141							40				
F	3															
_				-												
						-ALLOVIAL DEPOSITS-										
F																
- 25 -				-							60					
	2	S12 24	25.0		SIVI	similar to S11, except with frequent seams of silt and fine sand, well stratified. moist					60	40				
-	6		27.0													
	/			275.9												
				27.0		BOTTOM OF EXPLORATION 27.0 FT										
						Note: Borehole grouted upon completion.										
1																
1																
1																
1																
	Note:	Soil ide	entificati	ion based	l on vis	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	в	ori	ng	No	•		H/	\-В7	,	

APPENDIX B

CPT Sounding Logs and Related Information

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Normalized Cone Penetration Test Plots

Seismic Cone Penetration Test Plots

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Seismic Cone Penetration Test Tabular Results (Vs)

F

Job No:	15-53087
Client:	Haley & Aldrich
Project:	AECI - New Madrid
Sounding ID:	SCPT15-HAC7
Date:	15-Sep-2015

Beam
1.50
0.00
0.66

SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs						
Тір	Geophone	Ray	Ray Path	Travel Time	Interval	
Depth	Depth	Path	Difference	Interval	Velocity	
(ft)	(ft)	(ft)	(ft)	(ms)	(ft/s)	
1.15	0.49	1.58				
3.12	2.46	2.88	1.30	2.29	570	
6.40	5.74	5.93	3.05	11.46	266	
9.68	9.02	9.15	3.21	6.25	514	
12.96	12.30	12.39	3.25	7.95	408	
16.24	15.58	15.66	3.26	8.84	369	
19.52	18.86	18.92	3.27	6.97	469	
22.80	22.15	22.20	3.27	6.67	490	
26.08	25.43	25.47	3.27	5.37	610	
29.36	28.71	28.75	3.28	4.31	760	
32.64	31.99	32.02	3.28	4.21	778	
35.92	35.27	35.30	3.28	4.11	797	
39.21	38.55	38.58	3.28	4.19	782	
42.49	41.83	41.86	3.28	3.90	841	
45.77	45.11	45.14	3.28	4.59	714	
49.05	48.39	48.42	3.28	3.90	841	
52.33	51.67	51.69	3.28	4.19	782	
55.61	54.95	54.97	3.28 4.48		731	
58.89	58.23	58.25	3.28 4.35		754	
62.17	61.52	61.53	3.28 4.38		749	
65.45	64.80	64.81	3.28	4.29	765	
68.73	68.08	68.09	3.28	4.37	750	
72.01	71.36	71.37	3.28	4.34	755	
75.30	74.64	74.65	3.28	3.46	947	
78.58	77.92	77.93	3.28	3.78	867	
81.86	81.20	81.21	3.28	3.78	867	
85.14	84.48	84.49	3.28	3.57	918	
88.42	87.76	87.78	3.28	3.65	898	
91.70	91.04	91.06	3.28	4.02	815	
95.14	94.49	94.50	3.44	3.81	904	

Job No:	15-53087
Client:	Haley & Aldrich
Project:	AECI - New Madrid
Sounding ID:	SCPT15-HAC8
Date:	16-Sep-2015

Seismic Source:	Beam
Source Offset (ft):	1.50
Source Depth (ft):	0.00
Geophone Offset (ft):	0.66

SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs						
Tip Depth	Geophone Depth	Ray Path	Ray Path Difference	Travel Time Interval	Interval Velocity	
(ft)	(ft)	(ft)	(ft)	(ms)	(ft/s)	
1.15	0.49	1.58				
2.95	2.30	2.74	1.16	0.89	1306	
6.23	5.58	5.78	3.03	6.56	462	
9.51	8.86	8.98	3.21	5.51	582	
12.80	12.14	12.23	3.25	4.94	657	
16.08	15.42	15.49	3.26	5.83	559	
19.36	18.70	18.76	3.27	5.23	625	
22.64	21.98	22.03	3.27	5.71	573	
25.92	25.26	25.31	3.27	5.27	622	
29.20	28.54	28.58	3.28	5.43	603	
32.48	31.82	31.86	3.28	5.83	562	
35.76	35.10	35.14	3.28	5.43	604	
39.04	38.39	38.41	3.28	5.43	604	
42.32	41.67	41.69	3.28	5.27	622	
45.60	44.95	44.97	3.28	5.11	642	
48.88	48.23	48.25	3.28	4.62	710	
50.03	49.38	49.40	1.15	0.97	1181	

Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots

Job No: Client: Project: Start Date: End Date: 15-53087 Haley & Aldrich AECI - New Madrid, Marston, MO 15-Sep-2015 17-Sep-2015

CPTu PORE PRESSURE DISSIPATION SUMMARY							
Sounding ID	File Name	Cone Area (cm ²)	Duration (s)	Test Depth (ft)	Estimated Equilibrium Pore Pressure U _{eq} (ft)	Calculated Phreatic Surface (ft)	Estimated Phreatic Surface (ft)
CPT15-HAC1	15-53087_CP01	15	605	50.03	8.97	41.07	
CPT15-HAC2	15-53087_CP02	15	700	50.03	1.92	48.12	
CPT15-HAC3	15-53087_CP03	15	600	95.14	53.33	41.81	
CPT15-HAC4	15-53087_CP04	15	600	50.03	15.06	34.97	
CPT15-HAC5	15-53087_CP05	15	1000	75.13	31.73	43.40	
CPT15-HAC6	15-53087_CP06	15	300	50.03	19.92	30.11	
SCPT15-HAC7	15-53087_SP07	15	300	1.15			
SCPT15-HAC7	15-53087_SP07	15	300	3.12			
SCPT15-HAC7	15-53087_SP07	15	190	6.40	2.59	3.81	
SCPT15-HAC7	15-53087_SP07	15	600	95.14	53.33	41.81	
SCPT15-HAC8	15-53087_SP08	15	200	1.15			
SCPT15-HAC8	15-53087_SP08	15	150	2.95			
SCPT15-HAC8	15-53087_SP08	15	150	6.23			
SCPT15-HAC8	15-53087_SP08	15	150	9.51	0.34	9.17	
SCPT15-HAC8	15-53087_SP08	15	400	12.80			
SCPT15-HAC8	15-53087_SP08	15	600	16.08			
SCPT15-HAC8	15-53087_SP08	15	1700	19.36			
SCPT15-HAC8	15-53087_SP08	15	600	22.64			
SCPT15-HAC8	15-53087_SP08	15	400	25.92			
SCPT15-HAC8	15-53087_SP08	15	600	29.20			
SCPT15-HAC8	15-53087_SP08	15	7020	32.48			
SCPT15-HAC8	15-53087_SP08	15	5800	35.76			
SCPT15-HAC8	15-53087_SP08	15	900	39.04			
SCPT15-HAC8	15-53087_SP08	15	2400	42.32			
SCPT15-HAC8	15-53087_SP08	15	600	45.60			
SCPT15-HAC8	15-53087_SP08	15	200	48.88			
SCPT15-HAC8	15-53087_SP08	15	900	50.03			
CPT15-HAC9	15-53087_CP09	15	500	75.13	27.89	47.24	
CPT15-HAC10	15-53087_CP10	15	600	50.52			
Totals	29 dissipations		484.4 min				

Sounding: SCPT15-HAC8 Cone: AD419 Cone Area: 15 sq cm

Duration: 400.0 s

CONETEC Haley & Aldrich

Job No: 15-53087 Date: 16-Sep-2015 12:39:09 Site: AECI-New Madrid

CONETEC Haley & Aldrich

Job No: 15-53087 Date: 16-Sep-2015 12:39:09 Site: AECI-New Madrid

APPENDIX C

Laboratory Test Results

GSAMAIN2 41-1-37431-002 LAB DATA.GPJ SHAN_WIL.GD

SHAN WII GSAMAIN2 41-1-37431-003 LAB DATA.GPJ

SHAN WII GSAMAIN2 41-1-37431-003 LAB DATA.GPJ

FIG

JOB NO. <u>41-1-37431-003</u> SHEET NO. <u>1</u> TESTED BY CMB CLIENT NAME <u>Haley & Aldrich</u> CHECKED BY CLASSIFICATION OF UNDISTURBED SAMPLE DEPTH (ft) <u>5.0-7.0</u>	
CLIENT NAME Haley & Aldrich CHECKED BY CLASSIFICATION OF UNDISTURBED SAMPLE SAMPLE NO. U2 DEPTH (ft) 5.0-7.0	
CLASSIFICATION OF UNDISTURBED SAMPLE SAMPLE NO. U2 DEPTH (ft) 5.0-7.0	
CLASSIFICATION OF UNDISTURBED SAMPLE SAMPLE NO. U2 DEPTH (ft) 5.0-7.0	
SAMPLE NO. <u>U2</u> DEPTH (ft) <u>5.0-7.0</u>	
Sampling Method Push	
Type of Sample Shelby Tube Inch 3"	
Brass or Steel	
DEPTH NAT. W.C. TYPE OF CLASSIFICATION	
	/
5.0 Sample: Good Fair Poor Disturbe	d
PP=N/A HAT-3 MC Dark gray, Silt (ML) (ASH); moist; <10%	
6.0	
Dark gray, Silty Sand (SM) (Slag); moist;	
to coarse grained, subangular, sand.	

Procedure: ASTM D 2488

NOTE:

Soil description is based on visual-manual procedure. This description is not meant for engineering purposes requiring precise classification of soils.

Can/Tare No.	HAT-3	HAT-4
WET + TARE	74.43	73.65
DRY + TARE	58.35	56.61
TARE	2.54	2.57
% WATER	28.8	31.5

All sample percentages for cobbles and boulders are by volume.

REMARKS:

PROJECT AECI	Structural Integrity As	sessment	DATE	10/14/15	BORING NO.	HA-B5
JOB NO. 41-1-3	37431-003		SHEET NO.	1	TESTED BY	СМВ
CLIENT NAME	Haley & Aldrich				CHECKED BY	
CLASSIFICATIO	N OF UNDISTURBE	D SAMPLE				
	SAMPLE NO	U1		_ DEPTH (ft	i) <u>10.0-12.0</u>	
	Sampling Method	Push				
	Type of Sample	Shelby Tub	be		Inch3	"
					Brass o	Steel
DE	PTH NAT.	W.C.	TYPE OF		CLASSIFICATI	ON
	- 1. Strength init	. vv.c.	1501		24 INCL	
10.0					Sample: Good Fair	Poor Disturbed
	PP=N/A	HAT-5	мс	Dark gray,	Silt (ML) (ASH); m	oist; <10%
_	+			fine sand, dilatancv.	90% low dry streng low plasticity.	ith, rapid
_	+		SAVED			
10.5	+					
_	+		Consol/Hydro			
	+		SAVED			
_	+			Sample b	elow 10.8 feet very der head during pus	soft, seeped shina.
11.0					51	5
	±			±		
_	+			+		
	+			1		
11.5						
	+			‡		
-	+			+		
12.0				Moisture s	ample obtained fro	m sample
12.0						

Procedure: ASTM D 2488

NOTE:

Soil description is based on visual-manual procedure. This description is not meant for engineering purposes requiring precise classification of soils.

HAT-5	HAT-6
45.03	35.53
35.54	24.87
2.56	2.54
28.8	47.7
	HAT-5 45.03 35.54 2.56 28.8

All sample percentages for cobbles and boulders are by volume.

REMARKS:

PROJECT AECI Structural Integrity Assessment		DATE	10/9/15	BORING NO.	HA-B5	
JOB NO. 41-1-374	JOB NO. 41-1-37431-003		SHEET NO.	1	TESTED BY	СМВ
CLIENT NAME Haley & Aldrich					CHECKED BY	
CLASSIFICATION C	F UNDISTURBED	SAMPLE				
SA	AMPLE NO	U2		DEPTH (f	t) <u>20.0-22.0</u>	
Sa	ampling Method	Push				
Ту	pe of Sample	Shelby Tub	pe		Inch <u>3"</u>	
Brass o(Steel)						Steel
DEPT	H NAT. \ Strength info	W.C.	TYPE OF TEST		CLASSIFICATIO	DN
					24 INCH	RECOVERY
20.0					Sample: Good Fair	Poor Disturbed
	PP=N/A	HAT-1	MC	Dark gray	, Silt (ML) (ASH) with	n fine to
	±		SAVED	to coarse	, subangualr sand; 8	80% low dry
_	+			strength,	rapid dilatancy, low p	plasticity.
20.5	+			<u> </u>		
_	+					
	+			Į.		
	+			ÌL.		
21.0						
-	+		SAVED	-		
	±					
21 5	+		Consol			
				Ļ		
-	+		SAVED	-		
	Ŧ			F		
22.0	PP=N/A	HAT-2				

Procedure: ASTM D 2488

NOTE:

Soil description is based on visual-manual procedure. This description is not meant for engineering purposes requiring precise classification of soils.

Can/Tare No.	HAT-1	HAT-2
WET + TARE	61.95	76.46
DRY + TARE	48.31	58.13
TARE	2.52	2.54
% WATER	29.8	33.0

All sample percentages for cobbles and boulders are by volume.

REMARKS:

TUBE DENSITY ASTM D2937

Project	AECI Structural Integrity Assessment		Client	Haley & Al		drich	
Location	Marston, Missouri		Tested By / Date		CMB	10/9-14/15	
Job No.	41-1-37431-003		Calculated By / Date		CMB	10/16/15	
File	41-1-37431-003 D2937		Checked By / Date		CMB	10/16/15	
Sample Boring	HA-B4	HA	-B5	HA	-B5		
Sample Number	U2	U1		l	2		

Sample Number	U2	U1	U2	
Sample Depth	5.0 - 7.0	10.0 - 12.0	20.0 - 22.0	
Height (in)	22.620	23.790	23.845	
Diameter (in)	2.881	2.862	2.884	
Weight (gms)	4030.5	3983	4280.00	
Tare ID				
Tare weight (gms)				
Wet Weight (gms)				
Dry Weight (gms)				
Moisture %	30.2	38.3	34.6	
Area (in ²)	6.52	6.43	6.53	0.00
Volume (in)	147.46	153.05	155.77	0.00
Volume (ft)	0.09	0.09	0.09	0.00
Volume (cm)	2416.41	2507.99	2552.58	0.00
Wet Density (pcf)	104.1	99.1	104.7	#DIV/0!
Dry Density (pcf)	80.0	71.7	77.8	#DIV/0!

Project	AECI Structural	Integrity Assess	ment	Client		Haley & Aldrig	ch. Inc.
Location	Marston Misso	uri	mont	Tested By / D	ate	CMB	10/21/15
Job Number	41-1-37431-003	3	The second second second	Calculated By	/ Date	CMB	10/30/15
Boring	HA-B4			Checked By /	Date	TTR	112/15
Sample	112		NOT NOT OTHER	File	Duto	41-1-37431-0031	HA-B4 U2 D2435
Dopth (ff)	57			Procedure		ASTM D2435	17-04 02 02400
	5.7	Data	Final Data	Flocedule		A01WI D2400	1
	Initial Oceanie Lleiebt	Data Ding Diamatan	Comple Usight		Tripapa	ingo #1	
10 10 1 1	Sample Height	Ring Diameter	Sample Height	linghag	Tara Na	ngs #1	-
Measured Reading 1	1.004	2.503	0.850	Inches	Tare No.	0-1	4
Measured Reading 2	1.003	2.502	0.850	inches	Tare Weight	2.51	4
Measured Reading 3	1.005	2.505	0.849	inches	Wet Weight	50.82	
Measured Reading 4	1.004	2.503	0.849	inches	Dry Weight	38.60	1
Average Reading	1.004	2.503	0.850	inches	M.C. %	33.9%	
Wet Weight + Ring	288.07	Wet+Ring+Tare	358.83	grams	Trimmi	ings #2	
Weight of Ring	144.11	Dry+Ring+Tare	330.88	grams	Tare No.	C-2	
Specific Gravity	2.66	Tare Weight	82.92	grams	Tare Weight	2.56]
Sample Volume	80.97		66.97	cm³	Wet Weight	43.76	
Height of Solids	0.484		0.484	inches	Dry Weight	33.77	1
Void Ratio	1.08		0.72		M.C. %	32.0%	1
Saturation	95.6		100.0	percent	Ring Number	410	1
Weight of Water	40.11		27.95	grams	Inundated @	0.27	tsf
Moisture Contont	38.6		26.9	percent	Trimming Met	nod	Cutting Shoe
Mot Unit Moinht	30.0		122.0	percent	Cutting Shee	/ Turntable / M	one (Ring)]
Det Unit Weight	111.0		06.9	por	Mothed Land		
Dry Unit Weight	80.1		96.8	pcr	Computed Ltt	A OF B	inches
Notes: The specific g	ravity is compute	ed assuming satu	iration at the end	or the test.	Computed Ht.	0.830	Inches
Load	1	Lo	ad 2	Loa	ad 3	Loa	id 4
Air Press.	1.6	Air Press.	2.4	Air Press.	3.9	Air Press.	7.1
Load, tsf	0.25	Load, tsf	0.5	Load, tsf	1.0	Load, tsf	2.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	77	0.1	120	0.1	183	0.1	390
0.25	79	0.25	123	0.25	191	0.25	421
0.5	80	0.5	124	0.5	198	0.5	443
1	81	1	126	1	201	1	459
2	82	2	128	2	204	2	471
4	83	4	130	4	209	4	480
8	85	8	131	8	212	8	488
17	87	15	133	15	216	15	495
30	89	30	135	30	220	30	501
30	00	60	100	60	220	60	506
100		100		120		120	512
120		120		120		120	512
240		240	-	240		240	517
480		480		400		370	520
1440		1440		1440		1305	526
Load 8	5	Lo	ad 6	Loa	ad /	Loa	8 0
Air Press.	3.9	Air Press.	2.4	Air Press.	3.9	Air Press.	7.1
Load, tsf	1.0	Load, tsf	0.5	Load, tsf	1.0	Load, tsf	2.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	518	0.1	507	0.1	510	0.1	525
0.25	517	0.25	507	0.25	510	0.25	526
0.5	517	0.5	507	0.5	510	0.5	526
1	517	1	506	1	510	1	526
2	517	2	506	2	510	2	527
4	516	4	505	4	510	4	527
8	516	8	505	8	511	8	528
15	516	15	504	15	511	15	528
30		30	/	30		30	529
50		60		60		60	/
120		120	1/	120		120	
120	X	240	- X	240	X	240	X
240		480	/ \	480		480	
480		1440	/ /	1440		1440	
1440		1440		1440		1440	

Project	AECI Structura	Structural Integrity Assessment		Client		Haley & Aldrich, Inc.	
Location	Marston, Misso	uri	a share and the	Tested By / Date		CMB	10/21/15
Job Number	41-1-37431-003	3	The states	Calculated By	/ Date	CMB	10/30/15
Boring	HA-B4	TRANSFER TO SEE	N. INSTRUCTION	Checked By /	Date	JTB	11215
Sample	U2	Market B		File		41-1-37431-003 H	A-B4 U2 D2435
Depth (ft)	5.7			Procedure		ASTM D2435	
Dopin (ity	Initia	I Data	Final Data				
	Sample Height	Ring Diameter	Sample Height		Trimmi	ings #1	
Measured Reading 1	1.004	2.503	0.850	inches	Tare No.	C-1	1
Measured Reading 2	1.003	2.502	0.850	inches	Tare Weight	2.51	1
Measured Reading 3	1.005	2.505	0.849	inches	Wet Weight	50.82	1
Measured Reading 4	1.004	2.503	0.849	inches	Dry Weight	38.60	1
Average Reading	1.004	2.503	0.850	inches	M.C. %	33.9%	1
Wet Weight + Ring	288.07	Wet+Ring+Tare	358.83	grams	Trimmi	ings #2	1
Weight of Ring	144.11	Drv+Ring+Tare	330.88	grams	Tare No.	C-2	1
Specific Gravity	2.66	Tare Weight	82.92	grams	Tare Weight	2.56	1
Sample Volume	80.97	, and thought	66.97	cm³	Wet Weight	43.76	1
Height of Solids	0.484		0.484	inches	Dry Weight	33.77	1
Void Ratio	1.08		0.72		M.C. %	32.0%	1
Saturation	95.6		100.0	percent	Ring Number	410	
Weight of Water	40.11		27.95	grams	Inundated @	0.27	tsf
Moisture Content	38.6		26.9	percent	Trimming Met	hod	Cutting Sho
Wet Unit Weight	111.0		122.9	pcf	[Cutting Shoe	/ Turntable / N	one (Ring)]
Dry Unit Weight	80.1		96.8	pcf	Method Used	A or B	
Notes: The specific g	ravity is compute	ed assuming satu	iration at the end	of the test.	Computed Ht.	0.830	inches
Load	Load 9		ad 10	Loa	nd 11	Load	12
Air Press.	13.3	Air Press.	25.9	Air Press.	50.8	Air Press.	101.3
Load, tsf	4.0	Load, tsf	8.0	Load, tsf	16.0	Load, tsf	32.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	707	0.1	1104	0.1	1473	0.1	1812
0.25	762	0.25	1147	0.25	1503	0.25	1830
0.5	788	0.5	1167	0.5	1518	0.5	1841
1	804	1	1180	1	1530	1	1851
2	817	2	1193	2	1540	2	1859
4	827	4	1203	4	1548	4	1867
8	838	8	1211	8	1556	8	1874
15	845	15	1219	15	1563	15	1880
30	851	30	1226	30	1570	30	1886
60	858	60	1232	60	1575	60	1891
120	863	120	1238	120	1580	120	1897
240	868	240	1243	240	1586	240	1902
410	871	480	1248	480	1591	480	1906
4245	884	1440	1255	1440	1598	1440	1913

Sheet 3

Project	AECI Structural	ECI Structural Integrity Assessment				Haley & Aldrid	ch, Inc.
Location	Marston, Misso	uri		Tested By /	Date	CMB	10/21/15
Job Number	41-1-37431-003	3		Calculated I	3y / Date	CMB	10/30/15
Boring	HA-B4		CONSIGNATION DE LA	Checked By	/ Date	JTB	11/2-15
Sample	U2		201223.39	File		41-1-37431-003 H	IA-B4 U2 D2435
Depth (ft)	5.7			Procedure		ASTM D2435	
Initial Data Final Data							
	Sample Height	Ring Diameter	Sample Height		Trimm	ings #1	
Measured Reading 1	1.004	2.503	0.850	inches	Tare No.	C-1	1
Measured Reading 2	1.003	2.502	0.850	inches	Tare Weight	2.51	1
Measured Reading 3	1.005	2.505	0.849	inches	Wet Weight	50.82	1
Measured Reading 4	1.004	2.503	0.849	inches	Dry Weight	38.60	1
Average Reading	1.004	2.503	0.850	inches	M.C. %	33.9%]
Wet Weight + Ring	288.07	288.07 Wet+Ring+Tare 358.83		grams	Trimmings #2		1
Weight of Ring	144.11	Dry+Ring+Tare	330.88	grams	Tare No.	C-2	1
Specific Gravity	2.66	Tare Weight	82.92	grams	Tare Weight	2.56	1
Sample Volume	80.97		66.97	cm³	Wet Weight	43.76	
Height of Solids	0.484		0.484	inches	Dry Weight	33.77	
Void Ratio	1.08		0.72		M.C. %	32.0%	1
Saturation	95.6		100.0	percent	Ring Number	410	
Weight of Water	40.11		27.95	grams	Inundated @	0.27	tsf
Moisture Content	38.6		26.9	percent	Trimming Met	ing Method Cutting Sh	
Wet Unit Weight	111.0		122.9	pcf	[Cutting Shoe	utting Shoe / Turntable / None (Ring)	
Dry Unit Weight	80.1		96.8	pcf	Method Used	A or B	
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.	0.830	inches

CALIBRATION OF CONSOLIDATION DEFORMATION Procedure SWCP-15 (Reference ASTM D2435 AASHTO T216)

Date Calibrated: 10/29/15
Next Calibration Due: Next Test
Calibrated By: CMB
Checked By: CMB

Machine Number:	410						
Load tsf	Machine Def x 10 ⁻⁴	Correction Factor x 10 ⁻⁴	U-100 x 10 ⁻⁴	Corr. U-100 x 10 ⁻⁴	Compression, Percent	Cv	Void Ratio
0.01	0	0	0	0	0.00%	0	1.08
0.25	41	0	79.0	38	0.38%	3.3E+00	1.07
0.5	56	0	123.0	67	0.67%	3.3E+00	1.06
1.0	72	0	198.0	126	126 1.26%		1.05
2.0	92	0	485.0	393	3.93%	1.3E+00	0.99
1.0	84	43	517.0	390	3.90%	NA	0.99
0.5	77	43	506.0	386	3.86%	NA	1.00
1.0	81	43	511.0	387	3.87%	NA	1.00
2.0	83	43	526.0	400	4.00%	NA	0.99
4.0	113	0	838.0	725	725 7.25% 1.2E+		0.93
8.0	136	0	1209.0	1073 10.73% 1.0		1.0E+00	0.85
16.0	158	0	1541.0	1383	13.83%	1.2E+00	0.79
32.0	177	0	1863.0	1686	16.86%	9.8E-01	0.73

P:\37xxx\37400\37431\Phase 003\41-1-37431-003 HA-B4 U2 D2435 10/30/2015

Project	AECI Structural Integrity Assessment			Client		Haley & Aldrich, Inc.		
Location	Marston Misso	uri	ment	Tested By / D	ate	CMB	10/21/15	
Job Number	41-1-37431-00	2		Calculated By	/ Date	CMB	10/30/15	
Boring	HA-B5	5	the second second	Checked By	Date	TTP	112/15	
Somple	114			File	Date	41 1 37431-0031	HA-B5 11 D2435	
Depth (ft)	10.6			Procedure		ASTM D2435		
	10.0	Data	Einal Data	Flocedule		AS TWI D2435	1	
	Initia Comple Lleight	Ding Diamatar	Sample Usight		Trimm	ingo #1		
Manager I Davelland	Sample Height	Ring Diameter	Sample Height	linghag	Tara Na	ings #1	-	
Measured Reading 1	1.003	2.502	0.876	linches	Tare No.	0-3	4	
Measured Reading 2	1.002	2.504	0.878	inches	Tare Vveight	2.50	-	
Measured Reading 3	1.004	2.503	0.887	inches	vvet vveight	60.74	1	
Measured Reading 4	1.003	2.502	0.880	inches	Dry Weight	48.80	-	
Average Reading	1.003	2.503	0.880	inches	M.C. %	25.8%	1	
Wet Weight + Ring	279.51	Wet+Ring+Tare	362.76	grams	Trimmi	ings #2		
Weight of Ring	146.33	Dry+Ring+Tare	332.70	grams	Tare No.	C-4		
Specific Gravity	2.61	Tare Weight	83.07	grams	Tare Weight	2.49		
Sample Volume	80.86		69.71	cm°	Wet Weight	51.79		
Height of Solids	0.492		0.492	inches	Dry Weight	41.96]	
Void Ratio	1.04		0.76		M.C. %	24.9%	1	
Saturation	72.5		100.0	percent	Ring Number	411	1	
Weight of Water	29.88		30.06	grams	Inundated @	0.26	tsf	
Moisture Content	28.9		29.1	percent	Trimming Met	hod	Cutting Shoe	
Wet Unit Weight	102.8		119.4	Incf	ICutting Shoe	/ Turntable / N	one (Ring)]	
Dry Linit Weight	70.8		92.5	ncf	Method Used	A or B		
Notes: The specific a	ravity is compute	ad assuming satu	iration at the end	of the test	Computed Ht	0.865	inches	
Notes. The specific g	avity is compute		ad 2		ad 2		d 4	
Loau	1.6	Air Droop	au 2	Load 3		Air Pross	71	
Air Press.	1.0	All Press.	2.4	All Pless.	4.0	All Fless.	2.0	
Load, tst	0.26	Load, IST	0.5	Load, ISI	1.0	Load, tsi	2.0	
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	
0.1	150	0.1	267	0.1	430	0.1	590	
0.25	154	0.25	276	0.25	438	0.25	598	
0.5	159	0.5	281	0.5	443	0.5	604	
1	162	1	286	1	447	1	609	
2	169	2	289	2	451	2	614	
4	173	4	292	4	454	4	618	
8	176	8	296	8	458	8	623	
17	179	15	300	15	462	15	627	
30	182	30	303	30	465	30	631	
60		60	$\langle \rangle$	60		60	635	
120	1	120		120		120	639	
240	X	240	X	240	X	240	643	
480		480		480		370	645	
1440		1440		1440		1305	654	
Load	5	Lo	ad 6	Lo	ad 7	Loa	d 8	
Air Press	40	Air Press	24	Air Press	40	Air Press	7.1	
Load tsf	10	Load tsf	0.5	Load tsf	10	Load tsf	2.0	
Time min	Def x10-4	Time min	Def x10-4	Time min	Def x10-4	Time min	Def x10-4	
0.1	644	Δ 1	630	0.1	634	0.1	651	
0.1	644	0.1	630	0.1	635	0.1	652	
0.25	642	0.25	620	0.25	625	0.25	652	
0.5	643	0.5	629	0.5	635	0.5	662	
1	043	1	629	1	035	1	653	
2	643	2	628	2	635	2	003	
4	643	4	627	4	635	4	653	
8	642	8	626	8	635	8	654	
15	642	15	626	15	636	15	654	
30		30		30			655	
60		60		60		60	\backslash	
120		120		120		120		
240	\wedge	240	\wedge	240	\wedge	240	X	
480		480	/ \	480		480		
1440		1440		1440		1440		

Project	AECI Structural	AECI Structural Integrity Assessment				ch, Inc.		
Location	Marston, Misso	uri		Tested By / D	ate	CMB	10/21/15	
Job Number	41-1-37431-003	3	and services in	Calculated By	/ / Date	CMB	10/30/15	
Boring	HA-B5			Checked By /	Date	JTB	11/2/15	
Sample	U1	12.124 19/2012 11:	N ENGENEENE T	File		41-1-37431-003	HA-B5 U1 D243	
Depth (ft)	10.6	Stars Istanting	1. 19 S. 19 R. L.	Procedure		ASTM D2435		
	Initia	l Data	Final Data					
	Sample Height	Ring Diameter	Sample Height		Trimm	ings #1		
Measured Reading 1	1.003	2.502	0.876	inches	Tare No.	C-3	1	
Measured Reading 2	1.002	2.504	0.878	inches	Tare Weight	2.50	1	
Measured Reading 3	1.004	2.503	0.887	inches	Wet Weight	60.74	1	
Measured Reading 4	1.003	2.502	0.880	inches	Dry Weight	48.80	1	
Average Reading	1.003	2.503	0.880	inches	M.C. %	25.8%	1	
Wet Weight + Ring	279.51	Wet+Ring+Tare	362.76	grams	Trimm	ings #2	1	
Weight of Ring	146.33	Dry+Ring+Tare	332.70	grams	Tare No.	C-4		
Specific Gravity	2.61	Tare Weight	83.07	grams	Tare Weight	2.49	1	
Sample Volume	80.86		69.71	cm³	Wet Weight	51.79	1	
Height of Solids	0.492		0.492	inches	Dry Weight	41.96]	
Void Ratio	1.04		0.76	M.C. %		24.9%]	
Saturation	72.5		100.0	percent Ring Number		411]	
Weight of Water	29.88		30.06	grams	Inundated @	0.26	tsf	
Moisture Content	28.9		29.1	percent	Trimming Met	hod	Cutting Sho	
Wet Unit Weight	102.8		119.4	pcf	[Cutting Shoe	/ Turntable / N	one (Ring)]	
Dry Unit Weight	79.8		92.5	pcf	Method Used (A) or B			
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.	0.865	inches	
Load	9	Loa	id 10	Loa	Load 11		Load 12	
Air Press.	13.3	Air Press.	25.9	Air Press.	51.1	Air Press.	101.7	
Load, tsf	4.0	Load, tsf	8.0	Load, tsf	16.0	Load, tsf	32.0	
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	
0.1	774	0.1	994	0.1	1245	0.1	1521	
0.25	783	0.25	1006	0.25	1259	0.25	1534	
0.5	790	0.5	1013	0.5	1267	0.5	1543	
1	796	1	1021	1	1277	1	1552	
2	802	2	1028	2	1285	2	1561	
4	807	4	1034	4	1291	4	1569	
8	814	8	1041	8	1298	8	1576	
15	820	15	1046	15	1304	15	1582	
30	825	30	1052	30	1310	30	1588	
60	830	60	1058	60	1316	60	1594	
120	834	120	1062	120	1321	120	1600	
240	839	240	1068	240	1326	240	1605	
410	842	480	1072	480	1332	480	1611	
4245	855	1440	1080	1440	1340	1440	1619	

Sheet 3

Project	AECI Structural	AECI Structural Integrity Assessment				Haley & Aldrich, Inc.	
Location	Marston, Misso	uri	Stream of the	Tested By /	Date	ate CMB	
Job Number	41-1-37431-003	3		Calculated E	3y / Date	CMB	10/30/15
Boring	HA-B5		OF BALLEY	Checked By	/ Date	JTB	11/2/15
Sample	U1			File		41-1-37431-003 H	HA-B5 U1 D2435
Depth (ft)	10.6			Procedure		ASTM D2435	
	Initial	l Data	Final Data			· · · · · · · · · · · · · · · · · · ·	
	Sample Height	Ring Diameter	Sample Height		Trimm	ings #1	
Measured Reading 1	1.003	2.502	0.876	inches	Tare No.	C-3]
Measured Reading 2	1.002	2.504	0.878	inches	Tare Weight	2.50]
Measured Reading 3	1.004	2.503	0.887	inches	Wet Weight	60.74]
Measured Reading 4	1.003	2.502	0.880	inches	Dry Weight	48.80]
Average Reading	1.003	2.503	0.880	inches	M.C. %	25.8%]
Wet Weight + Ring	279.51	Wet+Ring+Tare	362.76	grams	Trimm	ings #2]
Weight of Ring	146.33	Dry+Ring+Tare	332.70	grams	Tare No.	C-4]
Specific Gravity	2.61	Tare Weight	83.07	grams	Tare Weight	2.49]
Sample Volume	80.86		69.71	cm³	Wet Weight	51.79]
Height of Solids	0.492		0.492	inches	Dry Weight	41.96]
Void Ratio	1.04		0.76		M.C. %	24.9%]
Saturation	72.5		100.0	percent	Ring Number	411]
Weight of Water	29.88		30.06	grams	Inundated @	0.26	tsf
Moisture Content	28.9		29.1	percent	Trimming Met	Trimming Method Cutting S	
Wet Unit Weight	102.8		119.4	pcf	[Cutting Shoe	[Cutting Shoe / Turntable / None (Ring	
Dry Unit Weight	79.8		92.5	pcf	Method Used	A or B	
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.	0.865	inches

CALIBRATION OF CONSOLIDATION DEFORMATION Procedure SWCP-15 (Reference ASTM D2435 AASHTO T216)

Equipment Calibrated: Consolidation Deformation	Date Calibrated: 10/29/15
Reason for Calibration: Test Completion	Next Calibration Due: Next Test
Equipment Used: Consolidation Appartus	Calibrated By: CMB
Steel Calibration Disk	Checked By: CMB

Machine Number:	411						
Load tsf	Machine Def x 10 ⁻⁴	Correction Factor x 10 ⁻⁴	U-100 x 10 ⁻⁴	Corr. U-100 x 10 ⁻⁴	Compression, Percent	Cv	Void Ratio
0.01	0	0	0	0	0.00%	0	1.039
0.26	62	0	159.0	97	0.97%	2.9E+00	1.020
0.5	85	0	283.5	199	1.99%	2.3E+00	0.999
1.0	108	0	445.5	338	338 3.38%		0.971
2.0	132	0	607.0	475	4.75%	2.1E+00	0.943
1.0	122	47	643.0	474	4.74%	NA	0.943
0.5	109	47	629.0	473	4.73%	NA	0.943
1.0	119	47	635.0	469	4.69%	NA	0.944
2.0	133	47	652.0	472	4.72%	NA	0.943
4.0	158	0	797.0	639	639 6.39% 1.7		0.909
8.0	188	0	1020.0	832 8.32% 1.3		1.8E+00	0.870
16.0	215	0	1279.0	1064	10.64%	1.5E+00	0.823
32.0	236	0	1575.0	1339	13.39%	6.3E-01	0.767

Project	AECI Structural Integrity Assessment			Client Haley & Aldrich, Inc.			
Location	Marston Misso	uri		Tested By / D)ate	CMB	110/21/15
Job Number	41-1-37431-00	2		Calculated By	/ Date	CMB	10/30/15
Boring	HA-B5			Checked By	Date	TIR	10/00/10
Sample	112			File	Date	41-1-37431-003	HA-B5 112 D2435
Donth (#)	21.4			Procedure		41-1-37431-003 HA-B3 02 D2433	
	Z1.4	Data	Einal Data	Flocedule		A3110 D2435	1
	Comple Unight	Data Ding Diamator	Sample Height		Trimm	ingo #1	
Manager d Danding d	Sample Height	Ring Diameter		linghag	Tare No.	1195 #1	-
Measured Reading 1	1.005	2.504	0.903	inches	Tare No.	0-5	-
Measured Reading 2	1.004	2.502	0.908	inches	Tare Weight	2.49	-
Measured Reading 3	1.004	2.505	0.909	linches	Dev Weight	30.19	-
Measured Reading 4	1.006	2.506	0.902	Inches	Dry weight	20.35	-
Average Reading	1.005	2.504	0.906	inches	M.C. %	41.2%	-
Wet Weight + Ring	289.07	Wet+Ring+Tare	366.23	grams	l rimmi	ings #2	-
Weight of Ring	146.30	Dry+Ring+Tare	332.71	grams	Tare No.	C-6	
Specific Gravity	2.70	Tare Weight	84.36	grams	Tare Weight	2.56	
Sample Volume	81.10		71.38	cm°	Wet Weight	36.74	1
Height of Solids	0.469		0.469	inches	Dry Weight	26.99	1
Void Ratio	1.14		0.89		M.C. %	39.9%	
Saturation	94.2		100.0	percent	Ring Number	440	
Weight of Water	40.72		33.52	grams	Inundated @	0.26	tsf
Moisture Content	39.9		32.8	percent	Trimming Met	hod	Cutting Shoe
Wet Unit Weight	109.9		118.6	pcf	[Cutting Shoe	/ Turntable / N	one (Ring)]
Dry Unit Weight	78.6		89.3	pcf	Method Used	A or B	
Notes: The specific a	ravity is compute	ed assuming satu	iration at the end	of the test.	Computed Ht.	0.884	inches
Load	1	Lo	ad 2	Lo	oad 3		d 4
Air Press	17	Air Press	2.5	Air Press	4.0	Air Press.	7.2
Load tef	0.26	Load tsf	0.5	Load tsf	1.0	Load tsf	20
Time min	Def v10-4	Time min	Def v10-4	Time min	Def v10-4	Time min	Def x10-4
0.1	A1	0.1	86	0.1	142	0.1	247
0.1	41	0.1	88	0.25	145	0.1	252
0.25	43	0.25	80	0.25	145	0.25	252
0.5	40	0.5	09	0.5	147	0.0	200
1	47		90		151	2	201
2	48	2	93	4	155	4	200
4	49	4	95	4	154	4	270
8	50	8	97	8	158	8	273
17	51	15	98	15	160	15	278
30	54	30	101	30	162	30	281
60		60		60	\backslash	60	286
120		120		120		120	289
240	X	240	X	240	X	240	293
480		480		480		370	295
1440		1440		1440		1305	303
Load 5	5	Lo	ad 6	Loa	ad 7	Loa	d 8
Air Press.	4.0	Air Press.	2.5	Air Press.	4.0	Air Press.	7.2
Load, tsf	1.0	Load, tsf	0.5	Load, tsf	1.0	Load, tsf	2.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	294	0.1	281	0.1	282	0.1	301
0.25	293	0.25	280	0.25	282	0.25	302
0.5	293	0.5	280	0.5	282	0.5	302
1	292	1	279	1	282	1	302
2	291	2	278	2	283	2	303
4	291	4	278	4	283	4	303
9	290	9	278	9	283	8	304
15	200	15	277	15	284	15	304
10	200		211	20	204	20	305
30		30		30		50	000
60		60	1/	100	\backslash	100	\backslash
120	X	120		120	X	120	\sim
240		240		240		240	\wedge
480		480	/ /	480		480	
1440		1440		1440		1440	

Project	AECI Structural	AECI Structural Integrity Assessment			Client Haley			
Location	Marston, Misso	uri		Tested By / D	late	CMB	10/21/15	
Job Number	41-1-37431-003	3	でで、「「「「「」」」	Calculated By	/ Date	CMB	10/30/15	
Boring	HA-B5	NEW STATISTICS		Checked By /	Date	JTB	11/2/15	
Sample	U2		TANK BUILDINGSER	File		41-1-37431-003	HA-B5 U2 D243	
Depth (ft)	21.4			Procedure		ASTM D2435		
	Initia	l Data	Final Data					
	Sample Height	Ring Diameter	Sample Height		Trimm	ings #1		
Measured Reading 1	1.005	2.504	0.903	inches	Tare No.	C-5	1	
Measured Reading 2	1.004	2.502	0.908	inches	Tare Weight	2.49	1	
Measured Reading 3	1.004	2.505	0.909	inches	Wet Weight	36.19	1	
Measured Reading 4	1.006	2.506	0.902	inches	Dry Weight	26.35	1	
Average Reading	1.005	2.504	0.906	inches	M.C. %	41.2%	1	
Wet Weight + Ring	289.07	Wet+Ring+Tare	366.23	grams	Trimmi	ings #2	1	
Weight of Ring	146.30	Dry+Ring+Tare	332.71	grams	Tare No.	C-6	1	
Specific Gravity	2.70	Tare Weight	84.36	grams	Tare Weight	2.56	1	
Sample Volume	81.10	0	71.38	cm³	Wet Weight	36.74	1	
Height of Solids	0.469		0.469	inches	Dry Weight	26.99	1	
Void Ratio	1.14		0.89		M.C. %	39.9%	1	
Saturation	94.2		100.0	percent Ring Number		440	1	
Weight of Water	40.72		33.52	grams Inundated @		0.26	tsf	
Moisture Content	39.9		32.8	percent	Trimming Met	nod	Cutting Sho	
Wet Unit Weight	109.9		118.6	pcf	[Cutting Shoe / Turntable / N		one (Ring)]	
Dry Unit Weight	78.6		89.3	pcf	Method Used A or B			
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.	0.884	inches	
Load	9	Loa	nd 10	Load 11		Load	12	
Air Press.	12.9	Air Press.	26.2	Air Press.	51.2	Air Press.	101.8	
Load, tsf	4.0	Load, tsf	8.0	Load, tsf	16.0	Load, tsf	32.0	
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	
0.1	404	0.1	678	0.1	966	0.1	1274	
0.25	414	0.25	690	0.25	978	0.25	1287	
0.5	421	0.5	698	0.5	988	0.5	1294	
1	426	1	707	1	997	1	1302	
2	433	2	716	2	1005	2	1310	
4	439	4	723	4	1011	4	1316	
8	445	8	730	8	1018	8	1322	
15	449	15	737	15	1025	15	1329	
30	455	30	744	30	1032	30	1336	
60	458	60	751	60	1039	60	1343	
120	464	120	757	120	1044	120	1347	
240	470	240	762	240	1050	240	1353	
410	473	480	769	480	1056	480	1360	
4245	489	1440	777	1440	1065	1440	1369	

Sheet 3

Project	AECI Structural	AECI Structural Integrity Assessment				Haley & Aldrid	drich, Inc.	
Location	Marston, Misso	uri	Saraha Marina da	Tested By /	Date	CMB	10/21/15	
Job Number	41-1-37431-003	3	Content of the other of the	Calculated E	By / Date	y / Date CMB		
Boring	HA-B5	NALES STOLES	BWI IN IN IN IN	Checked By	/ Date	JB	11/2/15	
Sample	U2			File		41-1-37431-003 H	A-B5 U2 D2435	
Depth (ft)	21.4	a second and a second	and the second second	Procedure		ASTM D2435		
	Initial	Data	Final Data					
	Sample Height	Ring Diameter	Sample Height		Trimm	ings #1		
Measured Reading 1	1.005	2.504	0.903	inches	Tare No.	C-5	1	
Measured Reading 2	1.004	2.502	0.908	inches	Tare Weight	2.49	1	
Measured Reading 3	1.004	2.505	0.909	inches	Wet Weight	36.19	1	
Measured Reading 4	1.006	2.506	0.902	inches	Dry Weight	26.35	1	
Average Reading	1.005	2.504	0.906	inches	M.C. %	41.2%		
Wet Weight + Ring	289.07	Wet+Ring+Tare	366.23	grams	Trimm	ings #2		
Weight of Ring	146.30	Dry+Ring+Tare	332.71	grams	Tare No.	C-6		
Specific Gravity	2.70	Tare Weight	84.36	grams	Tare Weight	2.56	1	
Sample Volume	81.10		71.38	cm³	Wet Weight	36.74	1	
Height of Solids	0.469		0.469	inches	Dry Weight	26.99	1	
Void Ratio	1.14		0.89		M.C. %	39.9%	1	
Saturation	94.2		100.0	percent	Ring Number	440		
Weight of Water	40.72		33.52	grams	Inundated @	0.26	tsf	
Moisture Content	39.9		32.8	percent	Trimming Met	Trimming Method Cutting S		
Wet Unit Weight	109.9		118.6	pcf	[Cutting Shoe	[Cutting Shoe / Turntable / None (Ring		
Dry Unit Weight	78.6		89.3	pcf	Method Used	A or B		
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.	0.884	inches	

CALIBRATION OF CONSOLIDATION DEFORMATION Procedure SWCP-15 (Reference ASTM D2435 AASHTO T216)

Date Calibrated: 10/29/15
Next Calibration Due: Next Test
Calibrated By: CMB
Checked By: CMB

Machine Number:	440						
Load	Machine Def	Correction	U-100	Corr. U-100	Compression,		
tsf	x 10 ⁻⁴	Factor x 10 ⁻⁴	x 10 ⁻⁴	x 10 ⁻⁴	Percent	Cv	Void Ratio
0.01	0	0	0	0	0.00%	0	1.14
0.26	23	0	46.0	23	0.23%	2.7E+00	1.14
0.5	38	0	88.0	50	0.50%	3.3E+00	1.13
1.0	55	0	145.0	90	0.90%	5.2E+00	1.12
2.0	74	0	261.0	187	187 1.87%		1.10
1.0	70	42	293.0	181	1.81%	NA	1.10
0.5	62	42	280.0	176	1.76%	NA	1.10
1.0	66	42	283.0	175	1.75%	NA	1.10
2.0	78	42	302.0	182	1.82%	NA	1.10
4.0	96	0	420.0	324	3.24%	2.6E+00	1.07
8.0	119	0	710.0	591	5.91%	1.6E+00	1.02
16.0	139	0	1000.0	861	8.61%	1.6E+00	0.96
32.0	165	0	1299.0	1134	11.34%	1.8E+00	0.90

UNCONSOLIDATED, UNDRAINED STRENGTH IN TRIAXIAL COMPRESSION

Project	AECI Structural	AECI Structural Integrity Assessment			Haley & Aldrich			
Location	Marston, Misso	arston, Missouri			Date			
Job No.	41-1-37431-003	3	Tested by	CMB	10/09/15			
Boring	HA-B5	HA-B5		Calculated by	CMB	10/12/15		
Sample	U2			Checked by	CMB	10/12/15		
Depth (ft)	20.3 - 20.8			File	41-1-37431-003-HA-B5-U2 D2850			
Undisturbed/Re	mold	old Undisturbed Procedure ASTM D285			D2850			
Description (D2487 + symbol) Dark gray, Silt (ML) (Ash).								
	Sample Data							

Diameter	2.862	inches					
Height	6.001	inches					
Wet wt.	1045.11	grams					
Initial Deflection (Before Confinement)							
	0.000	inches					
Initial Deflection (After Confinement)							
	0.000	inches					
Height Change (After Confinement)							
	0.000	inches					
Test Setup Data							
Confinement	7.5	psi					
Deflection	0.001	inch/division					
Load Cons.	1	lb/division					
After Test Data							
Tare No.	4						
Tare Wt.	103.53	grams					
Wet wt.	1128.14	grams					
Dry wt.	830.38	grams					
Sp. Gravity	2.68	assumed					

Photograph of Failure

REMARKS:

NOTE: The moisture content is taken from the entire sample after testing is completed.

Test Data							
Time	Cell Pressure	Deflection	Load				
hr-min	psi	div (in 0.001 in.)	div				
0:00:00	7.5	0	0				
0:00:08	7.5	5	5.6				
0:00:15	7.5	10	8.4				
0:00:23	7.5	15	11.1				
0:00:30	7.5	20	13.5				
0:00:45	7.5	30	17.7				
0:01:15	7.5	50	22.3				
0:01:53	7.5	75	29.3				
0:02:30	7.5	100	34.8				
0:03:23	7.5	135	42.8				
0:03:45	7.5	150	44.9				
0:04:23	7.5	175	47.9				
0:05:00	7.5	200	50.6				
0:05:53	7.5	235	53.0				
0:06:15	7.5	250	54.2				
0:07:30	7.5	300	56.7				
0:08:45	7.5	350	59.1				
0:10:00	7.5	400	60.1				
0:11:15	7.5	450	61.7				
0:12:30	7.5	500	62.8				
0:13:45	7.5	550	63.0				
0:15:00	7.5	600	63.3				
0:16:15	7.5	650	64.2				
0:17:30	7.5	700	64.5				
0:18:45	7.5	750	64.8				
0:20:00	7.5	800	64.8				
0:21:15	7.5	850	66.1				
0:22:30	7.5	900	67.0				

UNCONSOLIDATED, UNDRAINED STRENGTH IN TRIAXIAL COMPRESSION SUMMARY OF TEST DATA

Boring	HA_B5				Bv	Date
Sample				Tested by		10/09/15
Denth (ft)				Calculated by	CMB	10/12/15
Description	20.3 - 20.8 Dark grove Silt (ML) (Ach)			Checked by	CMB	10/12/15
Specimen Data	Da	ik gray, Siit (IVIL	Instrument Cons	tants	OND	10/12/10
Height	6.001	inches			in also a /div	l
Diamotor	0.001	inches	Lood	0.001	Inches/div	
	2.002	Inches	Luau	7.5	ID/div.	
	2.097		Comment	<i>C.1</i>	psi	
Volume	632.6	CC	Destaurations			
wet wt.	1045.11	grams	Peak values	0.000		l
Bulk Density	103.1	pci	p	0.866	tsf	
Dry Density	/3.1	pcr	q	0.326	tst	
M.C.	41.0%	percent	strain	15.0%	%	
Saturation	85.3%	percent	strain rate	0.040	in. per min.	
Void ratio	1.287					
Gs	2.68	assumed		e .		
Deformation	Load	Strain	Load	Stress	р	q
div.	div.	%	lb	tst	tsf	tsf
0.000	0	0.0%	0	0.000	0.540	0.000
0.005	5.6	0.1%	5.6	0.063	0.571	0.031
0.010	8.4	0.2%	8.4	0.094	0.587	0.047
0.015	11.1	0.2%	11.1	0.124	0.602	0.062
0.020	13.5	0.3%	13.5	0.151	0.615	0.075
0.030	17.7	0.5%	17.7	0.197	0.639	0.099
0.050	22.3	0.8%	22.3	0.248	0.664	0.124
0.075	29.3	1.2%	29.3	0.324	0.702	0.162
0.100	34.8	1.7%	34.8	0.383	0.732	0.192
0.135	42.8	2.2%	42.8	0.468	0.774	0.234
0.150	44.9	2.5%	44.9	0.490	0.785	0.245
0.175	47.9	2.9%	47.9	0.521	0.800	0.260
0.200	50.6	3.3%	50.6	0.548	0.814	0.274
0.235	53.0	3.9%	53.0	0.571	0.825	0.285
0.250	54.2	4.2%	54.2	0.582	0.831	0.291
0.300	56.7	5.0%	56.7	0.604	0.842	0.302
0.350	59.1	5.8%	59.1	0.625	0.852	0.312
0.400	60.1	6.7%	60.1	0.631	0.855	0.315
0.450	61.7	7.5%	61.7	0.642	0.861	0.321
0.500	62.8	8.3%	62.8	0.649	0.864	0.324
0.550	63.0	9.2%	63.0	0.646	0.863	0.323
0.600	63.3	10.0%	63.3	0.644	0.862	0.322
0.650	64.2	10.8%	64.2	0.648	0.864	0.324
0.700	64.5	11.7%	64.5	0.646	0.863	0.323
0.750	64.8	12.5%	64.8	0.645	0.862	0.322
0.800	64.8	13.3%	64.8	0.640	0.860	0.320
0.850	66.1	14.2%	66.1	0.648	0.864	0.324
0.900	67	15.0%	67.0	0.652	0.866	0.326
0.000	01	101070	0110	AFCI Struct	ural Integrity A	Assessment
				AECI Structural Integrity Assessment		
				UNCONSOLIDATED, UNDRAINED STRENGTH		
				IN TRIAXIAL COMPRESSION		
				BORING - HA-B5 : SAMPLE - U2		
				October 2015 41-1-37431-003		
				SHANNON & W	ILSON, INC.	FIG
				Geotechnical and Envir	onmental	10.

P:\37xxx\37400\37431\Phase 003\41-1-37431-003 HA-B5 U2 D2850 10/12/2015

APPENDIX D

Analyses

40616-300_FIG D2.PPT

40616-300_FIG D3.PPT

40616-300_FIG D4.PPT

40616-300_FIG D5.PPT

40616-300_FIG D7.PPT

FIGURE D-7

