

REPORT ON SAFETY FACTOR ASSESSMENT POND 003 AND POND 004

NEW MADRID POWER PLANT NEW MADRID, MISSOURI

by Haley & Aldrich, Inc. Cleveland, Ohio

for Associated Electric Cooperative, Inc. Springfield, Missouri

File No. 40616-300 October 2016

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

17 October 2016 File No. 40616-300

Associated Electric Cooperative, Inc. 2814 South Golden Avenue P.O. Box 754 Springfield, Missouri 65801

Attention: Russ Weatherly

Supervisor, Land and Water Resources

Subject: Report on Safety Factor Assessment

Pond 003 and Pond 004 New Madrid Power Plant New Madrid, Missouri

Mr. Weatherly:

We are pleased to submit herewith our report to Associated Electric Cooperative, Inc. (AECI) entitled, "Report on Safety Factor Assessment, Pond 003¹ and Pond 004², New Madrid Power Plant, New Madrid, Missouri." This report has been prepared in accordance with our agreed to scopes of work and your subsequent authorizations, and includes background information regarding the project, the results of our field investigation program, and the results of our safety factor assessment.

The purpose of this study was to evaluate the subsurface soil and water conditions at the coal combustion residuals (CCR) surface impoundments site and evaluate the stability of the subject impoundments in accordance with the Environmental Protection Agency (EPA) 40 CFR Parts 257 and 261, "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities" (CCR Rule). A subsurface exploration program was conducted in September 2015 at the project site to obtain subsurface information for engineering evaluations. The program consisted of drilling a total of nine (9) test borings and advancing ten (10) cone penetrometer soundings. A review of the subsurface information and laboratory test results revealed that the soils used to construct the impoundment dikes are not susceptible to liquefaction. A series of one-dimensional ground response analyses were performed to estimate the subsurface response to six (6) site-specific earthquake events at the New Madrid site. The results were used to perform Newmark displacement analyses and select the pseudostatic coefficient for use in the seismic stability analyses. The results of the stability analyses indicate that the static safety factors are above the minimum required values for all analyzed sections at each impoundment. Preliminary seismic stability analyses for the analyzed sections indicated acceptable safety factors for all sections except the section on the west side of Pond 003 where CCR had been

¹ Pond 003 is also referred to as the 003 Unlined Pond

² Pond 004 is also referred to as the 004 Slag Dewatering Pond

staged directly adjacent to the dike within the impoundment footprint. AECI has since regraded that material along the west side of Pond 003 to a configuration that that has acceptable safety factors.

This report includes background information regarding the project, the results of our field investigation program, and the detailed results of our safety factor assessment.

Background

The project site is located at the New Madrid Power Plant located at 41 St. Jude Industrial Park Highway, New Madrid, Missouri as shown on **Figure 1**. The approximately 100-acre Pond 003 and 10-acre Pond 004 are located on the east side of the site, adjacent to the Mississippi River.

AECI is be required to meet the requirements of the Environmental Protection Agency (EPA) 40 CFR Parts 257 and 261, "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities" (CCR Rule) effective 19 October 2015. In particular for existing active CCR surface impoundments, AECI must demonstrate that specified slope stability safety factors are met in accordance with §257.73(e). This report satisfies that requirement.

Purpose and Scope

The purpose of this study was to investigate the subsurface soil and water conditions at the site and to perform the initial safety factor assessment in accordance with Section §257.73(e)(1) of the CCR Rule. To achieve the objective discussed above, the scope of work undertaken for this investigation included the tasks listed below.

- Planning and executing a field investigation program to obtain subsurface information for dike liquefaction and slope stability analyses. A total of nine (9) test borings were drilled to depths ranging from between approximately 25 and 100 ft below ground surface. Ten (10) cone penetrometer soundings (CPTs) were performed to depths ranging from approximately 50 to 100 ft below ground surface.
- Conducting a geotechnical laboratory testing program on soil, CCR and boiler slag samples
 recovered from subsurface explorations to aid in classification and for determination of
 engineering properties required for engineering analyses.
- Performing a site-specific seismic analysis to estimate the subsurface response to an earthquake event at the New Madrid site.
- Performing a Newmark displacement analysis to determine the amount of slope displacement for a given value of yield acceleration.
- Performing slope stability (static and seismic) and liquefaction analyses.

Field Investigation Program

SUBSURFACE EXPLORATION PROGRAM

A subsurface exploration program was conducted at the project site during the period 14 September 2015 to 22 September 2015 to obtain subsurface information for engineering evaluations. The program consisted of drilling a total of nine (9) test borings and advancing ten (10) CPTs. The borings were drilled by Bulldog Drilling, Inc. of Dupo, IL using an ATV-mounted CME 55 L6 drill rig. The CPT soundings were advanced by ConeTec, Inc. of West Berlin, New Jersey using a track-mounted rig. A Haley & Aldrich representative was present in the field to observe the subsurface explorations.

The locations of the subsurface explorations are shown on **Figure 2**. The as-drilled locations and elevations of the explorations were determined in the field by Smith & Company Engineers by optical survey. The locations and elevations of the explorations should be considered accurate only to the degree implied by the method used. A summary of the subsurface explorations is presented in **Table I**³.

Test Borings

The test borings were drilled to depths ranging from approximately 25 ft to 100 ft below ground surface. The borings were advanced using 4-1/4-in. inside diameter (i.d.) hollow stem augers. Split-spoon samples were typically obtained continuously for the upper 15 ft at each test boring and at 5 ft intervals thereafter. In some instances, continuous split spoon sampling extended to depths up to 30 ft until natural soil was observed. The standard penetration resistance was determined at each sample level by counting the number of blows required to drive a standard split-spoon sampler (1-3/8-in. inside diameter, 2-in. outside diameter) a distance of either 18 in. or 24 in. into undisturbed soil and ash under the impact of a 140-lb hammer free-falling 30 in. The number of blows required to advance the sampler was recorded for each 6-in. interval. The standard penetration resistance N-value is determined by summing the number of blows required to advance the sampler the middle 12 in. of the 24-in. sampling range or by summing the number of blows required to advance the sampler the last 12 in. of the 18-in. sampling range.

Relatively undisturbed samples of ponded CCR were obtained from test borings HA-B4A and HA-B5A by pushing a 3-in. diameter thin-walled steel tube (Shelby tube) into the CCR at a planned sampling depth. A hydraulically operated stationary piston sampler attached to the drill rods was used to advance the tubes. The tubes were removed from the ground and sealed.

Samples recovered from the borings were taken to Shannon and Wilson, Inc. in Saint Louis, Missouri for laboratory testing. The boring logs are presented in **Appendix A**. The boring logs and related information depict subsurface conditions only at the specific locations and at the particular time designated on the logs. Subsurface conditions at other locations may differ from conditions occurring at the exploration locations. Also the passage of time may result in a change in the subsurface conditions at these exploration locations.

³ Note: a table that does not appear near its citation can be found in a separate table at the end of the report.

Cone Penetrometer Soundings

The majority of the CPT soundings were performed immediately adjacent to SPT borings to facilitate correlating the readings from the CPT sounding with the samples obtained from the split-spoon and Shelby tube samplers. The CPT soundings were advanced to depths of approximately 50 ft and 100 ft below ground surface. The CPT soundings were performed using a piezocone penetrometer that provides measurements of pore water pressure at one or more locations on the penetrometer surface in general conformance with ASTM D5778. CPT data, including pore pressure measurements, were collected at 2-cm depth intervals.

The rod string and cone were advanced in natural ground at the standard rate of 2 cm/sec. At HA-C8, the rod string was advanced through the existing stratum of fly ash/boiler slag at a rate of approximately 0.6 cm per second and through the underlying natural soil at the standard rate of 2 cm/sec. The slower advancement rate in the fly ash/boiler slag was utilized because research has shown that the slower penetration rate better simulates the drained condition and provides a better interpretation of the CCR friction angle.

Seismic cone penetration testing was used to obtain in-situ measurements of shear wave velocity at HA-C7 and HA-C8. Measurements were taken at 1-meter (3.3-ft) intervals, which correspond to the intervals at which additional rods needed to be added to the rod string. Pore water dissipation testing was also performed at select depths in all CPTs to estimate hydraulic conductivity/pore pressure dissipation properties. The CPT sounding results are presented in **Appendix B**.

LABORATORY TESTING PROGRAM

A laboratory testing program was conducted on selected soil and CCR samples recovered from subsurface explorations to aid in classification and for determination of engineering properties required for design. The primary purpose of the testing program was to evaluate the index and strength properties of the soil, CCR, and boiler slag materials. Testing included natural moisture contents, Atterberg limits, grain size distributions, percent passing the No. 200 sieve, unconsolidated-undrained (UU) triaxial strength, consolidation, and tube density. The tests were performed in general conformance with applicable ASTM test procedures. Results of the laboratory testing program are presented in **Appendix C** and are summarized in **Table II**.

Subsurface Soil and Water Conditions

GEOLOGY

The site is located within the New Madrid Seismic Zone. The new Madrid Seismic Zone lies at the north end of the Mississippi Embayment, which is a deep, low-lying basin filled with Cretaceous to recent sediments. The stratigraphy at our site is presented on **Figure 3** and is based on the general profile develop by Van Arsdale and TenBrink (2000). The project site is immediately underlain by imported embankment fill and levee fill associated with embankment and levee construction as well as various deposits of fly ash and boiler slag associated with coal burning operations.

The existing fill is underlain by Quaternary Mississippi River alluvium, which is characterized by silty clay and sand, Pleistocene Loess, which is characterized by silt and clayey silt, and Pliocene-Pleistocene Upland Complex Gravel consisting of fine to very coarse sand and gravel. These sediments are believed to be surficial deposits of fluvial or estuarine origin.

Underlying the Quaternary Deposits is the Jackson Formation, which is characterized by fluvial/deltaic medium to very fine grained silty sand, interbedded with clayey silt. The Jackson Formation overlies the Eocene Claiborne Group that consists of the Cockfield Formation over the Cook Mountain Formation over The Memphis Sand. The Cockfield formation is characterized by fluvial/deltaic silt and clay interbedded with medium to fine grained sand. The Cook Mountain Formation consists of silt and clay containing variable amounts of lignite and sand. The Memphis Sand is predominately described as consisting of fluvial/deltaic fine to very coarse grained quartzose sand containing rock fragments, pyrite and lignite.

Below the Eocene Claiborne Group is Paleocene consisting of the Wilcox Group and Midway Group. The Wilcox Group is comprised of the Flour Island Formation overlying the Fort Pillow Sand. The Flour Island formation is characterized by silty clay and clayey silt with lenses of fine grained sand. The Fort Pillow Sand is described as consisting of fine to very coarse grained quartzose sand. The Midway Group is comprised of Old Breastworks Formation, Porters Creek Clay and The Clayton Formation. Old Breastworks Formation is described as sandy, micaceous silty clay. The Porters Creek Clay is described as a micaceous clay. The Clayton Formation consists of glauconitic, fossiliferous clay.

Underlying the Wilcox and Midway groups is Upper Cretaceous soil consisting of McNairy Sand, Demopolis Formation and Coffee Formation. McNairy Sand is characterized by fine to coarse grained sand interbedded with silty clay. The Demopolis Formation is composed of calcareous clays, marls and some chalky materials. The Coffee Formation is made up of stratified and cross-bedded clays and fine grained sand.

Below the Upper Cretaceous lies the Paleozoic strata. The Paleozoic strata is described as fine to coarse crystalline dolomite. At the AECI site, the depth to the Paleozoic strata is approximately 1,900 ft below ground surface.

The geologic descriptions discussed herein are credited to various references entitled "General Geology of the Mississippi Embayment" (Cushing, Boswell, Hosman 1964), "Deep Shear Wave Velocity Profiles of Mississippi Embayment Sediments Determined From Surface Wave Measurements" (Rosenblad, 2007) and "Late Cretaceous and Cenozoic Geology of the New Madrid Seismic Zone" (Van Arsdale and TenBrink, 2000).

SUBSURFACE CONDITIONS

Descriptions of the soil conditions encountered during the subsurface exploration program conducted at the site are provided below in order of increasing depth below ground surface. Actual soil conditions

between boring locations may differ from these typical descriptions. Refer to the test boring logs for specific descriptions of soil samples obtained from the borings.

The subsurface conditions identified by the CPT soundings do not represent material classifications based on grain-size distributions, index tests, or visual observation. Rather, the CPT soundings provide an indicator of relative behavior type based on the mechanical characteristics measured during the soundings. For this reason, the descriptions of subsurface conditions discussed below are based on our visual-manual classification of samples obtained from test borings and the results of laboratory testing.

- <u>ROADWAY FILL</u> Below the ground surface there is a stratum of fill material primarily described as SAND and GRAVEL. This stratum was encountered only in HA-B1, HA-B2, and HA-B6 and was fully penetrated where encountered. The thickness of this stratum was approximately 1 ft.
- <u>FLY ASH</u> Below the ground surface at HA-B5, there is a stratum of fill material primarily
 described as brown, dark-brown, and black SILT with sand (ML). This stratum was encountered
 only in HA-B5 and was fully penetrated. Where encountered and fully penetrated, the thickness
 of this stratum was approximately 17 ft.
- <u>FLY ASH INTERMIXED WITH BOILER SLAG</u> Below the fly ash at HA-B5, there is a stratum of fill
 material primarily described as brown and dark-brown SILT with sand and slag particles (ML).
 This stratum was encountered only in HA-B5 and was fully penetrated. Where encountered, the
 thickness of this stratum was approximately 15 ft.
- <u>BOILER SLAG</u> Below the ground surface at HA-B4, there is a stratum of fill material primarily
 described as brown and dark-brown SILT with sand and slag particles (ML). This stratum was
 encountered only in HA-B4 and was fully penetrated. Where encountered, the thickness of this
 stratum was approximately 15 ft.
- <u>FILL</u> Below the ground surface in HA-B3 and HA-B7 and below the ROADWAY FILL in HA-B1, HA-B2, and HA-B6 a stratum of FILL material was encountered. The FILL is primarily described as lean CLAY (CL) and fat CLAY (CH). This stratum was encountered and fully penetrated in borings HA-B1, HA-B2, HA-B3, HA-B6, and HA-B7. Where encountered and fully penetrated, the thickness of the stratum ranged from approximately 10.0 ft to 25.0 ft. The density of cohesive, fine-grained soils encountered in this stratum ranged from soft to stiff, but was generally medium stiff to stiff.
- <u>ALLUVIAL DEPOSITS</u> Below the FILL, FLY ASH, FLY ASH INTERMIXED WITH BOILER SLAG, and BOILER SLAG there is a stratum of natural soil primarily described as silty SAND (SM), poorly graded SAND (SP), SILT (ML), lean CLAY (CL), and fat CLAY (CH). This stratum was encountered in all borings. This stratum was fully penetrated in all borings with the exception of HA-B7. Where encountered and fully penetrated, the thickness of this stratum ranged from approximately 7 ft to 26 ft. The density of coarse-grained soils encountered in this stratum ranged from very loose to medium dense. The consistency of fine-grained soils encountered in this stratum ranged from soft to stiff.

FLUVIAL DEPOSITS – Below the ALLUVIAL DEPOSITS, there is a stratum of natural soil primarily described as light brown and gray poorly-graded SAND (SP), and light brown well-graded sand (SW). This stratum was encountered in all borings except HA-B7, but was not fully penetrated by any of the test borings. The density of coarse-grained soils encountered in this stratum ranged from medium dense to dense.

Water levels were typically measured in the boreholes when water was encountered during drilling and after the test borings were completed. Measured water levels are summarized in **Table I**. Where encountered, water levels measured during drilling generally ranged from a depth of 18 to 43 ft below ground surface, which corresponds to a water level ranging between approximately El. 257 and 293 for geotechnical evaluation purposes. It should be noted that the water levels measured in borings HA-B3, HA-B5, and HA-B5A were significantly higher than the water levels measured in the other borings and likely represent localized water conditions within the impoundment footprint.

Water levels were also estimated by the cone penetrometer soundings and are also summarized in **Table I**. Water levels estimated during the soundings generally ranged from 30 to 48 ft below ground surface, which corresponds to a water level ranging between approximately El. 258 and El. 274. It should be noted that measurements estimated during the soundings did not involve physical observation of water levels, but rather an estimated water level based on pore pressure measurements. The estimates of water levels at each sounding should only be considered accurate to the degree implied by the determination method.

Water level readings have been made in the subsurface explorations at times and under conditions discussed herein. However, it must be noted that fluctuations in the level of the water may occur due to variations in power plant sluicing activities, season, rainfall, temperature, dewatering activities, and other factors not evident at the time measurements were made and reported herein.

Safety Factor Assessment

As mentioned previously, the purpose of this study was to perform the initial safety factor assessment in accordance with Section §257.73(e)(1) of the CCR Rule. As required by the CCR Rule, the initial safety factor assessment is performed for each applicable CCR unit to determine calculated factors of safety (using simple static and pseudo-static analysis) relative to the minimum prescribed safety factors for the critical cross section of the embankment. Those are defined as follows:

- For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.
- The calculated static factor of safety under the long-term, maximum storage pool loading conditions must equal or exceed 1.50.
- The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.
- The calculated seismic factor of safety must equal or exceed 1.00.

The results of our evaluation of the safety factors are presented in the following sections of the report.

LIQUEFACTION EVALUATION

During strong earthquake shaking, loose, saturated cohesionless soil deposits may experience a sudden loss of strength and stiffness, sometimes resulting in loss of bearing capacity, large permanent lateral displacements, and/or seismic settlement of the ground. This phenomenon is called soil liquefaction.

In accordance with the requirements of §257.73(e)(1)(iv), liquefaction evaluation required is to assess the potential for liquefaction of the impoundment dikes at the site in question. A variety of screening techniques exist to distinguish sites that are clearly safe with respect to liquefaction from those sites that require more detailed study. One of the most commonly used screening techniques used to make this assessment is the evaluation of fines content and plasticity index. In general, soils having greater than 15 percent (by weight) finer than 0.005 mm, a liquid limit greater than 35 percent, and an in-situ water content less than 90 percent of the liquid limit generally do not liquefy (Seed and Idriss, 1982).

The results of our subsurface investigation indicate that the impoundment dikes at Pond 003 and Pond 004 are primarily constructed of clay soils and have the following characteristics:

- 90 percent (by weight) finer than 0.005
- Liquid limits > 40
- In-situ moisture contents less than 50 percent of the liquid limit

In consideration of the clay soils used to construct the dikes, it is our opinion, in accordance with generally accepted standards, that the impoundment dikes are not constructed of soils that are susceptible to liquefaction.

GLOBAL STABILITY FACTORS OF SAFETY

Stability analyses have been performed in general conformance with the principles and methodologies described in the USACE Slope Stability Manual (U.S. Army Corps of Engineers, 2003). Conventional static and seismic stability analyses of the impoundment dike structures were performed for rotational and block failures using limit equilibrium methods. Limit equilibrium methods compare forces, moments, and stresses which cause instability of the mass of the dike to those which resist that instability. The principle of the limit equilibrium method is to assume that if the slope under consideration were about to fail, or at the structural limit of failure, then one must determine the resulting shear stresses along the expected failure surface. These determined shear stresses are then compared with the shear strength of the soils along the expected failure surface to determine the safety factor. The specific details of the analyses performed for Pond 003 and Pond 004 are presented in the following sections of this report.

DESIGN WATER LEVEL

As stated earlier, subsurface water levels measured during our subsurface exploration program indicated static water levels were generally 30 to 48 ft below the existing ground surface. In Pond 003, zones of perched water within the impoundment were encountered within the fly ash and boiler slag due to sluicing operations. Accordingly, the following static water levels were used in our analyses.

<u>Location</u>	<u>Elevation</u>
Pond 003	East Side – El. 262 West Side – El. 274
	west side – El. 274
Pond 004 (North Portion)	East Side - El. 261
Pond 004 (Southern Portion)	East Side – El. 258 West Side – El. 262

The water retained in each impoundment must be modeled at the maximum storage pool level for the static drained and seismic undrained analyses. The maximum surcharge pool level must be used to model the ponded water for the static undrained analyses. This approach is consistent with the requirements of the CCR Rule. The specific pool levels used in our analyses are summarized below and chosen as the conservative values associated with each impoundment and cross sections.

<u>Location</u>	<u>Maximum</u>	<u>Maximum</u>
	Storage Pool Level	Surcharge Pool Level
Pond 003 (max. storage)	El. 301	El. 309
Pond 004 (max. storage)	El. 294	El. 301

Given the prescribed impoundment pool levels and the design static groundwater levels mentioned above, a seepage analysis was performed to determine the piezometric head between the edge of the impoundment and the toe of the dike, which is where the static groundwater level was encountered. The computer software program, Slide 6.029, developed by RocScience, Inc., was used to perform the seepage analyses and the resulting piezometric head was used in the stability analyses discussed herein.

MATERIAL PROPERTIES

The material properties used in our analyses have been developed using the results of the referenced test borings, CPT soundings, and laboratory testing. When evaluating the CPT results, material strengths were typically determined by averaging the measurements in a particular stratum and choosing conservative strength properties equal to the average value minus one standard deviation. A summary of the material properties is provided below in **Table III**.

TABLE III MATERIAL PROPERT	TIES			
Material	Material Strength	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)
Foots of the State of	Drained	115	50	30
Embankment Fill	Undrained	115	800	0
Laves Fill	Drained	115	50	30
Levee Fill	Undrained	115	800	0
Deilas Class (Fill)	Drained	110	0	30
Boiler Slag (Fill)	Undrained	110	500	0
ΓΙ. ΛοΙο (Γ:II)	Drained	90	0	28
Fly Ash (Fill)	Undrained	90	500	0
Fly Ash / Boiler	Drained	105	0	29
Slag (Fill)	Undrained	105	800	0
Allowial Class	Drained	110	50	28
Alluvial Clay	Undrained	110	1300	0
Alluvial Cand	Drained	108	0	36
Alluvial Sand	Undrained	108	0	36
Fluvial Sand	Drained	120	0	38
riuvidi Sallu	Undrained	120	0	38

Seismic cone penetration testing was used to obtain in-situ measurements of shear wave velocity during the subsurface exploration program. The insitu measurements were performed to a depth of 95 ft below ground surface. Below that depth, shear wave velocity measurements of the underlying soils were approximated using published data specific to the Mississippi Embayment and the New Madrid Seismic Zone (Cramer, Hashash, Romero, Rosenblad, Van Arsdale). The site specific shear wave velocity profile is shown on **Figure 4**.

SITE SPECIFIC SEISMIC RESPONSE ANALYSIS

Introduction

As mentioned previously, the New Madrid Power Plant is located within the New Madrid Seismic Zone and the Mississippi embayment. The natural embayment soils underlying the impoundments are estimated to be 1,900-ft thick. It has been demonstrated that strong ground motions are significantly de-amplified at both the short and long periods due to the nonlinear behavior of the soils in the Mississippi embayment. It has also been shown that at short periods increasing soil thickness correlates with a decreasing hazard due the nonlinear soil behavior. Similarly, at long periods, increasing soil thickness correlates with increasing hazard due to soil resonance (Cramer, 2015).

Overview of Site-Specific Seismic Analysis

A one-dimensional ground response analysis was performed to estimate the subsurface response to an earthquake event at New Madrid. Due to the complex nature of the analyses required, Dr. Professor Edward Kavazanjian, Jr. at Arizona State University and Dr. Chris Cramer at the University of Memphis were retained as part of our team to assist with the site-specific seismic analyses.

It is important that the rock motions and soil characteristics are correlated to the site conditions at the New Madrid Power Plant. Properly conditioned bedrock strong ground motions (acceleration time histories) are required to perform a site-specific seismic analysis. Strong motion records for large magnitude events are not available for Central U.S. (Romero and Rix, 2001). Therefore, alternative records were obtained from other sources that approximate the spectral response characteristics at the site.

The bedrock at the site is classified as NEHRP Site Class A, hard rock. The USGS Uniform Hazard spectral response characteristics for a hypothetical Site Class A rock, based on the 2,500 –year return period ground motions, were used to identify the spectral characteristics of the time histories (i.e., the "Target Spectrum") used for the site-specific evaluation.

USGS Deaggregation and Deterministic Target Spectrum

There is a great deal of uncertainty with regard to predicting the location, size, and shaking intensity of future earthquakes. Probabilistic Seismic Hazard Analysis (PSHA) aims to quantify these uncertainties, and combine them to produce a description of the distribution of future shaking that may occur at a site. The 2008 NSHMP PSHA interactive deaggregation web site was used to obtain the characteristics of the most significant earthquakes (the earthquakes that contribute the most to the seismic hazard) responsible for seismic activity at the New Madrid power plant. This website produces graphical representations of the characteristics of earthquake events most likely to affect the site within a given time span. The deaggregation plot for spectral response period T=0.1s is shown on **Figure D-1 located in Appendix D**. This plot suggests that the representative design earthquake for ground motions with a return period of 2,500 years should be between magnitude 7.5 and 8.0 at a distance of approximately 11 km from the site.

The significant characteristics of the earthquake such as magnitude and distance are used to select representative ground motions. The characteristics are also used to construct the deterministic target spectrum that is used for selecting ground motions.

A special type of target spectrum, called the conditional mean spectrum (CMS), was created for the study because it focuses the spectral response of all the ground motions to a particular period along the target spectrum (Baker, 2011). The particular target period selected is related to characteristics of the structure being analyzed such as shear wave velocity and height of sliding mass in the case of the impoundments. Based on the characteristics of general failure planes determined from slope stability analysis for the impoundment, a target period of 0.1s was chosen for the deterministic CMS target spectrum for the New Madrid Power Plant. The magnitude of the CMS target spectrum was then

amplified to a mean plus one standard deviation target which is conservative (i.e., the approximately 84th percentile ground motion, rather than the median, or expected, ground motion) and is generally chosen to evaluate structures that are of critical importance.

The deterministic target spectrum is based on ground motion prediction equations (GMPEs) that use magnitude and distance to predict the spectral response of the ground motion. According to the USGS PSHA, the largest event predicted to affect New Madrid Power Plant is a magnitude 8 earthquake that is 10.5km from the site. The computer software program Shake 2000, developed by GeoMotions, provided the central and eastern U.S. (CEUS) GMPEs and the CMS algorithms used to create the target spectrum. Site-specific spectral responses were generated from five CEUS attenuation relationships using Shake 2000 as shown on **Figure D-2 in Appendix D**. These attenuation relationships were based on a magnitude 8 earthquake as a distance of 10.5 km from the source. The largest spectral response in the group (i.e., Campbell, 2003) was selected to produce the target spectrum for the site.

Conditional Mean Spectrum Groundmotions Scaled To Target Period T=0.1s

The CMS spectrum according to Baker, 2011 is to be constructed with the ground motions scaled so that their spectral response at the target period, T^* matches the spectral response at the CMS Target spectrum. The target period, T^* is chosen to approximate the fundamental frequency of the sliding mass which can be determined from the location of the failure plane within the slope at a condition of equilibrium (i.e., safety factor equal to 1.0). The shear wave velocity V_S of the sliding mass was estimated to range between 450 ft/sec to as much as 1000 ft/sec for the impoundments at the site based on our in-situ shear wave testing. Our analyses assumed the height of the sliding mass varies from 5ft to 21ft. Based on the anticipated variance of embankment height and shear wave velocity, an average fundamental frequency of T^* =0.1s was used to scale the ground motions to the target spectrum

Shake 2000 was used to provide the CMS spectrum for Campbell 2003 CEUS GMPE using a target period $T^* = 0.1s$ and amplifying the CMS to correspond to a mean plus one standard deviation spectrum. The mean plus one standard deviation spectrum shown on **Figure D-3 in Appendix D** was used as the deterministic CMS target spectrum for the New Madrid Power Plant.

Rock Motions for The CMS

Six time history records were selected to match the target response spectrum for the site. Five of these rock motions were obtained from naturally occurring events and one rock motion was synthetically generated to match a magnitude 8 earthquake associated with the ground response for the Mississippi Embayment at Memphis, TN (Atkinson 2002). A primary focus was to match the ground motion spectra to the CMS target spectrum, as suggested by NEHRP (2011) when considering magnitude, distance, and focal mechanism. Rock motion records were selected from the Pacific Earthquake Engineering Research (PEER) Center's Strong Motion Database. The motions are summarized below in **Table IV** and depicted graphically **Figure D-4 in Appendix D**. As shown on **Figure D-5 in Appendix D**, the arithmetic mean spectrum of the generated records closely matches the CMS bedrock spectrum over the period range of interest.

TABLE IV EARTHQUAK	E RECORD	os .				
	THQUAKE RECORDS Return Period ditional an ponse 2,500- year		Earth	quake R	ecord Used	
Event		PEER File Name	Earthquake	М	Mechanism	Distance (km)
		RSN497-Nahanni_S3270.AT2	Nahinni	6.76	Reverse	5.32
		RSN550_Chalfant.A_A-CPL070.AT2	Chalfant	6.19	Strike-slip	18.31
Canditional		RSN4481_L-Aquila_FA030XTE.AT2	L'Aquila	6.3	Normal	6.81
Mean	•	RSN825_CAPEMEND_CPM000.AT2	Cape Mendocino	7.1	Reverse	6.96
Response	year	RSN8158_CChurch_LPCCN10W.AT2	Christ Church	6.2	Reverse Oblique	6.12
		N/A	Synthetic (Atkinson and Beresnev)	8.0	N/A	N/A

Due to the unusually large magnitude and close proximity of the earthquake projected for the site, it is difficult to locate ground motions that effectively scale to the shorter period portion of the CMS target spectrum. Many of the selected ground motions have spectral response characteristics that are significantly lower than the target between periods ranging from 0.01s to 0.06s. According to the Federal Highway Administration, due to the low number of ground motions for central and eastern U.S., it is acceptable to spectrally match the ground motions to the lower period portions of the target spectrum (FHWA, 2011). For this reason, the ground motions were spectrally matched to the CMS target spectrum between T=0.02sec to 0.06sec as shown on **Figure D-6 in Appendix D.**

One-Dimensional Ground Response Analysis

As mentioned previously, a one-dimensional ground response analysis was performed to estimate the surface ground motion at the site. The soil column used as input into the model was constructed from the shear wave velocity profile at the site (from in-situ testing) along with other characteristics such as layer thickness, soil density and the dynamic behavior. The dynamic geotechnical properties (damping, modulus-damping curves, density, etc.) used in the ground response analysis were obtained from prior models developed by Dr. Chris Cramer and are representative of the non-linear, pressure dependent soil properties attributed to the Mississippi Embayment as described by Romero and Rix, 2005.

The computer software program Shake2000 was used to numerically simulate the propagation of rock motions applied to the base of the soil column up through the soil layers to the top of the soil column. Shake2000 uses an equivalent linear numerical technique to model the non-linear dynamic soil behavior in the soil column. **Figure D-7 included in Appendix D** shows the results of the Shake ground response analysis for the six representative rock motions. This figure compares the spectral response of the bedrock motions to the surface ground response and shows the transformation in response caused by wave propagation through the 1,900-ft thick soil column. **Table V** summarizes the surface PGA estimates at the New Madrid Power Plant.

TABLE V PREDICTED SURFACE PGA	AND NEWMARK MA	GNITUDE CORRECT	ION FACTOR	
Earthquake	Original Magnitude	CMS Scaled-Matched PGA	Shake Surface PGA	Newmark Magnitude Correction Factor ¹
Nahinni	6.76	1.60 g	0.33 g	1.41
Chalfant	6.19	1.77 g	0.33 g	1.65
L'Aquila	6.30	1.60 g	0.66 g	1.60
Cape Mendocino	7.01	1.40 g	0.41 g	1.32
Christ Church	6.25	2.00 g	0.41 g	1.65
Synthetic (Atkinson and Beresnev)	8.00	0.95 g	0.47 g	1.00

¹ Determined using the method developed by Bray and Traversarou

Newmark Displacement Analysis

The Newmark method predicts the amount of block displacement for a given value of yield acceleration. The Newmark displacement analysis is based on the shear stress time history acting along the failure plane within the slope. The yield acceleration is the minimum amount of ground acceleration necessary to initiate motion along the failure surface and is used to determine the appropriate pseudo-static coefficient for seismic stability analyses.

Shake 2000 was used to perform the Newmark displacement analysis by incorporating the results of the one-dimensional ground response analysis to estimate slope displacement. Shake 2000 incorporates several different variants of the Newmark block displacement method and the numerical approach known as YSLIP developed by Kavazanjian and Matasovic (1996) was chosen for our analysis. All six site-specific bedrock motions were used to evaluate relationships between the Newmark permanent displacements and the associated yield acceleration. Several impoundment cross-sections were evaluated and the most conservative location of the failure plane was determined to be 15 ft below the top of slope.

After performing the Newmark displacement analysis, it was necessary to adjust the displacement predictions to correspond to the difference between the magnitudes of the ground motions used in the analysis and the magnitude of the representative earthquake event established for the New Madrid Power Plant. Correction factors were applied to scale the displacements to the target magnitude 8 event. The correction factors were determined using the approach developed by Bray and Travasarou (2007), which relates permanent displacement from a Newmark analysis with the magnitude of the earthquake event (Bray, 2007). **Figure D-8 in Appendix D** presents the magnitude scaled permanent displacement versus yield acceleration.

DECOUPLED SEISMIC STABILITY ANALYSIS

Methodology for Analyses

The computer software program Slide 6.029 was used to evaluate the static and seismic stability of the impoundment dikes. Analyses were performed to evaluate static drained (long-term) and undrained (short-term) strength conditions for circular and block failures using Spencer's method of slices. Spencer's method of slices was selected because it fully satisfies the requirements of force and moment equilibrium (limit equilibrium method).

Seismic stability was evaluated using pseudo-static analyses and a 20 percent reduction in material strength to represent the approximate threshold between large and small strains induced by cyclic loading (Duncan, 2014). Pseudo-static analysis models the seismic shaking as a "permanent" body force that is added to the force-body diagram of a conventional static limit-equilibrium analysis; typically, only the horizontal component of earthquake shaking is modeled because the effects of vertical forces tend to average out to near zero (Jibson, 2011). This is a traditional approach for evaluating the stability of a slope during earthquake shaking and provides a simplified safety factor analysis for one earthquake pulse. A safety factor greater than or equal to one (FS \geq 1.0) indicates a slope is stable and a safety factor below one (FS < 1.0) indicates that the slope is unstable.

Pseudo-static Coefficient

The pseudo-static coefficient, k_s , used in our seismic analyses was selected using the results of the Newmark displacement analysis discussed previously. Accordingly, to the MSHA Impoundment Design Manual, the acceptable displacement of coal refuse impoundments is 25% of the upstream freeboard (MSHA, 2009). At each impoundment based observed conditions, that equates to:

- Pond 003 8 ft freeboard, acceptable displacement is 24 in.
- Pond 004 7-ft Freeboard, acceptable displacement is 21 in.

Assuming the most conservative case of 21-in. acceptable displacement, **Figure D-8 in Appendix D** shows that the yield acceleration corresponding to the most conservative earthquake motion is 0.25g. A pseudostatic coefficient lower than 0.25 will result in more than 21 in. deformation and one higher than 0.25 will result in less than 21 in. deformation. For the seismic stability analyses performed for the impoundments, we selected a pseudostatic coefficient of 0.28. This value was selected because it is slightly above the minimum value, which is conservative, and will result in displacements at each impoundment that are below MSHA acceptable values.

Results of Stability Evaluation

The critical cross section is defined as that which is anticipated to be most susceptible amongst all cross sections. To identify the critical cross sections at our project site, we examined the following conditions at several cross section locations at each impoundment:

a. the geometry of the upstream and downstream slopes;

- b. phreatic surface levels within and below the cross sections;
- c. subsurface soil conditions;
- d. presence or lack of surcharge loads behind the crest of the dikes; and
- e. presence or lack of reinforcing measures in front of the dikes.

Examination of the conditions noted above resulted in the identification of five (5) critical cross sections. Two (2) of the cross sections were located at Pond 003 and three (3) of the cross sections were located at the Pond 004. The results of our analyses are presented below in **Table VI** and are shown on the Slide output files included in **Appendix D**. As shown below, the static safety factors are above the minimum required values for all sections. The pseudo-static analyses for the analyzed sections indicate acceptable seismic safety factors for sections A-A', B-B', C-C', and D-D'. Section E-E' was originally modeled with its configuration as of 2015 with CCR staged near the dike on the west side of the Pond 004 impoundment. The preliminary static analyses for that scenario indicated acceptable factors of safety, but the seismic analyses did not. As noted previously, AECI revised the configuration of that staged material in 2016, and the results of the revised E-E' configuration indicate acceptable seismic and static safety factors. The results of the analyses based on the revised configuration are presented in Table VI and Appendix D.

TABLE VI SUMMARY OF STABILITY I	EVALUATIONS	5				
Cross Section	Condition ¹	Earthquake Event	Soil Strength	Required Safety Factor	Safety F Rotational Failure Surface	Block Failure Surface
A-A'	Static	-	Drained	1.5	4.3	4.9
(Pond 004)			Undrained	1.4	4.3	4.5
	Seismic	2,500-year	Undrained ²	1.0	1.2	1.1
	Static	-	Drained	1.5	3.8	4.3
B-B' (Pond 004)	J ca c. c		Undrained	1.4	7.6	6.4
	Seismic	2,500-year	Undrained ²	1.0	1.2	1.3
	Static	-	Drained	1.5	3.6	4.3
C-C' (Pond 004)			Undrained	1.4	3.9	4.5
	Seismic	2,500-year	Undrained ²	1.0	1.1	1.2
5.57	Static	-	Drained	1.5	2.3	3.7
D-D' (Pond 003)			Undrained	1.4	5.0	6.3
	Seismic	2,500-year	Undrained ²	1.0	1.2	1.3
F F/	Static	-	Drained 1.5		3.1	4.1
E-E' (Pond 003)	2.0		Undrained	1.4	4.1	4.3
	Seismic	2,500-year	Undrained ²	1.0	1.1	1.3

^{1.} Refer to Table III for material properties.

^{2.} Shear strengths have been reduced by 20 percent for seismic analyses.

DISCUSSION AND RECOMMENDATIONS

The analyses associated with the safety factor assessment have been performed in accordance with the requirement of Section §257.73 of the CCR Rule. A summary of our conclusions and recommendations as they relate to the rule requirements are provided below.

• For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

The results of our subsurface investigation indicate that the impoundment dikes at the Pond 003 and Pond 004 are primarily constructed of clay soils that are not susceptible to liquefaction. Accordingly, this requirement has been met.

• The calculated static factor of safety under the long-term, maximum storage pool loading conditions must equal or exceed 1.50.

As shown in **Table VI**, the static safety factors for the long-term (drained) maximum storage pool condition are above the minimum required values for all critical sections analyzed at Pond 003 and Pond 004. Accordingly, this requirement has been met.

• The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

As shown **in Table VI**, the static safety factors for the maximum surcharge pool loading condition (undrained) are above the minimum required values for all critical sections analyzed at Pond 003 and Pond 004. Accordingly, this requirement has been met.

The calculated seismic factor of safety must equal or exceed 1.00.

As shown in **Table VI**, the calculated seismic safety factors are above the minimum required value for all critical sections at Pond 003 and Pond 004. Accordingly, this requirement has been met.

CERTIFICATION

Based on our review of the information provided to us by AECI and the results of our field investigations and analyses, it is our opinion that the calculated factors of safety for the critical cross sections of the impoundment embankments for Pond 003 and Pond 004 meet the minimum factors of safety specified in §257.73(e)(1)(i) through (iv) of the EPA's CCR Rule.

Certification Statement – Pond 003

I certify that the Initial Safety Factor Assessment for AECI's Pond 003 at the New Madrid Power Plant meets the requirements of §257.73(e) of the EPA's CCR Rule.

Signed: Certifying Engineer

Print Name: Steven F. Putrich

Missouri License No.: 2014035813

Title: <u>Project Principal</u>
Company: Haley & Aldrich, Inc.

Professional Engineer's Seal:

<u>Certification Statement - Pond 004</u>

I certify that the Initial Safety Factor Assessment for AECI's Pond 004 at the New Madrid Power Plant meets the requirements of §257.73(e) of the EPA's CCR Rule.

Signed: Certifying Engineer

Print Name: Steven F. Putrich

Missouri License No.: 2014035813

Title: <u>Project Principal</u>
Company: <u>Haley & Aldrich, Inc.</u>

Professional Engineer's Seal:

CLOSING

We appreciate the opportunity to provide engineering services on this project to AECI.

Sincerely yours, HALEY & ALDRICH, INC.

Derrick A. Shelton

Geotechnical Program Manager | Senior Associate

Steven F. Putrich, P.E.

Project Principal

Enclosures:

References

Table I – Summary of Subsurface Explorations

Table II – Summary of Laboratory Test Results

Figure 1 – Project Locus

em & Shether

Figure 2 – Subsurface Exploration Location Plan

Figure 3 – Geologic Column for the New Madrid Seismic Zone

Figure 4 – Design Shear Wave Velocity Profile

Appendix A – Test Boring Logs

Appendix B – CPT Sounding Logs and Related Information

Appendix C – Laboratory Test Results

Appendix D - Analyses

REFERENCES

Atkinson G.M., Beresnev I.A. (2002); "Ground Motions at Memphis and St. Louis from M 7.5–8.0 Earthquakes in the New Madrid Seismic Zone", Bulletin of the Seismological Society of America, Vol. 92, No. 3, pp. 1015–1024, April 2002

Baker J.W. (2011); "Conditional Mean Spectrum: Tool for Ground-Motion Selection", J. Struct. Eng. 2011.137:322-331.

Bray J.D., T Traversarou (2007); "Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements", Journal of Geotechnical and Geoenvironmental Engineering © ASCE / APRIL 2007

Campbell, K. W. and Bozorgnia Y. (2003), Updated near-source ground motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra, Bulletin of the Seismological Society of America, 93(1), 314 -331.

Cramer C.H. (2015); "Charleston Area Earthquake Hazards Mapping Project (CAEHMP) Workshop and Pilot Study: Collaborative Research with the College of Charleston and the University of Memphis", Final technical Report-Award Number: G14AP00023 and G14AP00024, Center for Earthquake Research and Information, University of Memphis

Cushing, E.M., Boswell, E.H., and Hosman, R.L, (1964), "General Geology of the Mississippi Embayment", Department of the Interior, Geological Survey Professional Paper 448-B.

Duncan, J.M., Wright, S.G, and Brandon, T.L. (2014). Soil Strength and Slope Stability. John Wiley & Sons, Upper Saddle River, 2nd Edition, pp. 182-184.

Environmental Protection Agency, (2015), Code of Federal Regulations, "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule, "Title 40, Chapter I, Parts 257 and 261, April 17.

Federal Highway Administration (FHWA) (2011); "LRFD Seismic Analysis and Design of Transportation Geotechnical Features and Structural Foundations Reference Manual", FHWA-NHI-11-032, U.S. Dept. of Transportation

Hashash Y.M.A, D. Park (2001); "Non-linear one-dimensional seismic ground propagation in the Mississippi Embayment:, Engineering Geology 62 (2001) 185-206, Elsevier

Hynes-Griffin, M.E. and Franklin, A.G. (1984). "Rationalizing the seismic coefficient method," [Miscellaneous Paper GL-84-13]. U.S. Army Corp of Engineers Waterways Experiment Station. Vicksburg, Mississippi, 21pp.

Jibson, R.W., (2011), "Methods for assessing the stability of slopes during earthquakes—A Retrospective," Engineering Geology, v. 122, p. 43-50.

Kavazanjian, E.,Jr. and Matasovic, Y.L. (1996), "YSLIP_PM – A Computer Program for Simulation of Dynamic Behavior of a Rigid Block on an Inclined Plane and Calculation of Permanent Displacement of the Block", User's Manual p. 21 (plus appendix).

Kramer, S.L., (1996). Geotechnical Earthquake Engineering. Prentice Hall, Upper Saddle River, NJ, 653 pp.

Mine Safety and Health Administration – U.S. Department of Labor (MSHA), (May 2009. Rev. August 2010). Engineering and Design Manual Coal Refuse Disposal Facilities - Second Edition.

National Earthquakes Hazard Reduction Program (2011); "Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses", NIST GCR 11-917-15

Romero S.M., G.J. Rix (2005); "Ground Motion Amplification of Soils in the Upper Mississippi Embayment", Report No. GIT-CEE/GEO-01-1, National Science Foundation, Mid Atlantic Earthquake Center, Georgia Institute of Technology

Rosenblad, B.L. (2007), "Deep Shear Wave Velocity Profiles of Mississippi Embayment Sediments Determined from Surface Wave Measurements," Research supported by the U.S.G.S., Department of Interior, under USGS award number 06HQGR0131.

Seed, H.B. and Idriss, I.M. (1982), "Ground Motions and Soil Liquefaction During Earthquakes," Monograph No. 5, Earthquake Engineering Research Institute, Berkeley, California, 134 p.

Spencer, E. (1967), "A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces," Geotechnique, Vol. 17, No. 1, pp 11-26.

Terzhagi, K., (1950), Mechanism of landslides. In: Paige, S. (Ed.), Application of Geology to Engineering Practice (Berkey Volume). Geological Society of America, New York, NY, pp. 83-123.

U.S. Army Corps of Engineers (2003), "Engineering and Design: Slope Stability," Engineer Manual EM-1110-2-1902, Department of the Army, U.S. Army Corps of Engineers, Washington, DC, October.

Van Arsdale, R.B. and TenBrink, R.K. (2000), "Late Cretaceous and Cenozoic Geology of the New Madrid Seismic Zone," Bulletin of the Seismological Society of America, 90, 2, pp. 345-356, April 2000.

\was\Common\Projects\40616\-300 Structural Integrity Assessment\Deliverables\Letter Report\Final\2016-1017_HAI-NM Pond 003 and Pond 004 Safety Factor Assessment-F.docx

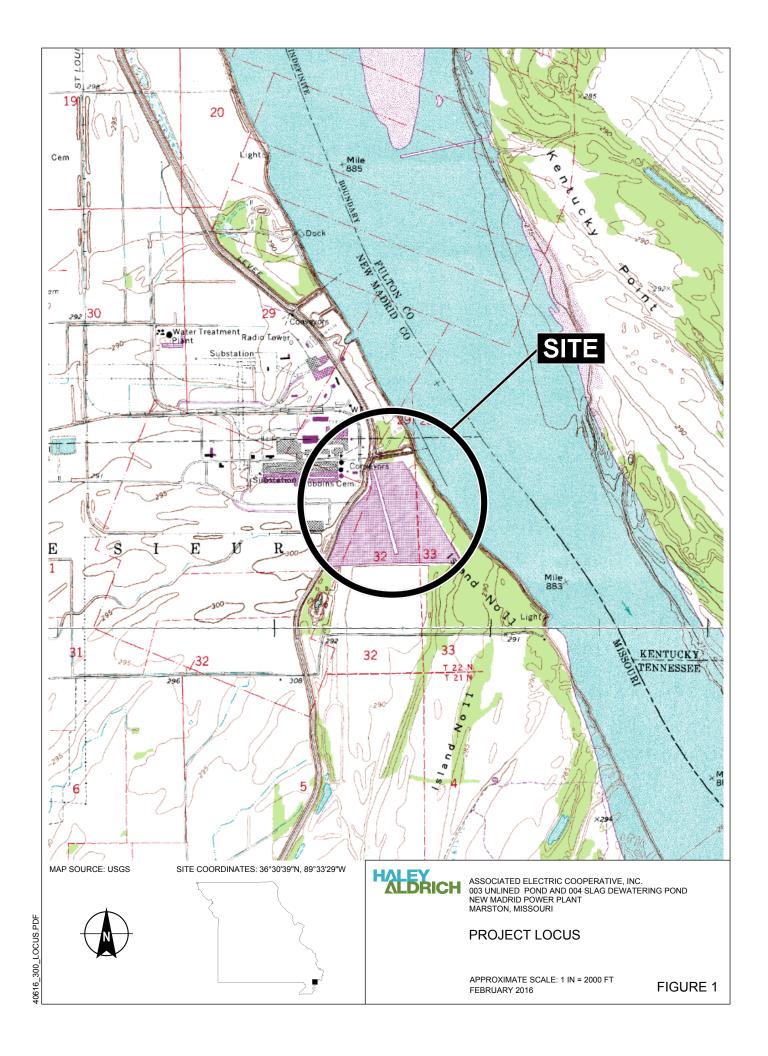
TABLE I
SUMMARY OF SUBSURFACE EXPLORATIONS
ASSOCIATED ELECTRIC COOPEATIVE, INC.
003 UNLINED POND AND 004 SLAG DEWATERING POND
MARSTON, MISSOURI

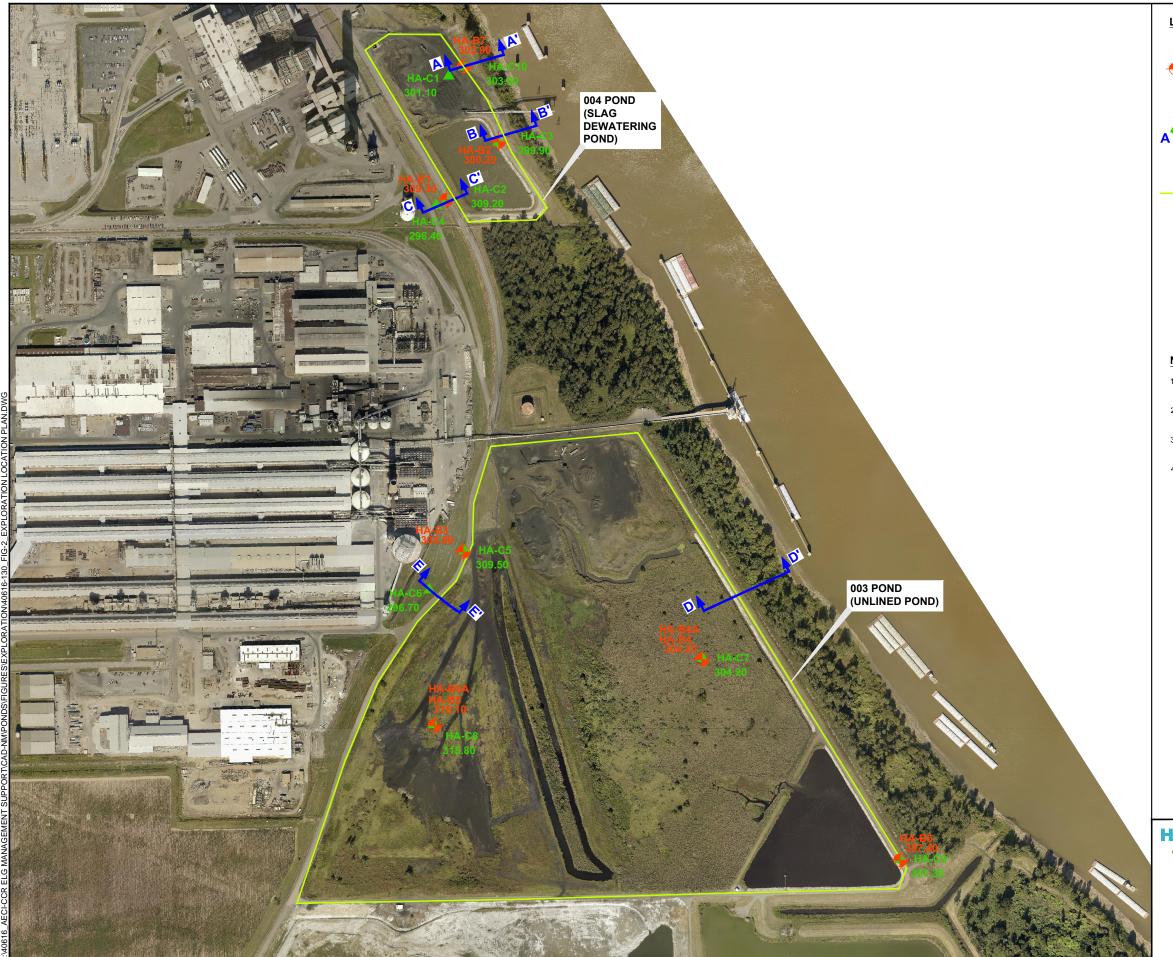
	Ground			Tatal	Water	3
Exploration Designation ¹	Surface El. ² (ft)	Northing ²	Easting ²	Total Exploration Depth (ft)	Depth Below Ground Surface (ft)	Elevation (ft)
HA-B1	309.3	249123.8	1096406.3	50.0	43.0	266.3
HA-B2	300.2	249425.1	1096677.9	95.0	40.5	259.7
HA-B3	308.8	247288.9	1096492.8	75.0	43.0	265.8
HA-B4	304.2	246728.8	1097737.1	95.0	13.0 ⁴	291.2
HA-B4A	304.2	246728.8	1097737.1	15.0	Not Encountered	
HA-B5	316.1	246385.4	1096344.8	50.0	43.0	273.1
HA-B5A	316.1	246385.4	1096344.8	29.0	25.0 ⁴	291.1
HA-B6	307.4	245683.4	1098768.8	75.0	40.0	267.4
HA-B7	302.9	249818.4	1096496.9	27.0	Not Encountered	
HA-C1	301.1	249768.9	1096418.4	50.0	41.0	260.1
HA-C2	309.2	249121.4	1096407.6	50.0	48.1	261.1
HA-C3	299.9	249422.8	1096674.6	95.1	41.8	258.1
HA-C4	296.5	249095.4	1096352.8	50.0	35.0	261.5
HA-C5	309.5	247296.2	1096499.1	75.1	43.4	266.1
HA-C6	296.7	247092.3	1096316.1	50.0	30.1	266.6
HA-C7	304.2	246735.4	1097740.8	95.1	41.8	262.4
HA-C8	315.8	246390.2	1096337.2	50.0	42.0	273.8
HA-C9	307.3	245688.2	1098766.8	75.1	47.2	260.1
HA-C10	303.0	249815.6	1096496.5	50.5	42.0	261.0

Notes:

- 1) Technical monitoring of subsurface explorations completed during the period 14 September 2015 through 2 September 2015 was performed by Haley & Aldrich, Inc.
- 2) Elevations are in feet and reference North American Vertical Datum of 1988 (NAVD88). Ground surface elevations of subsurface explorations were determined by optical survey. Survey performed by Smith & Company, Inc.
- 3) Water level readings represent the highest water level observed either during drilling, after completion of the boring, or as indicated by subsurface exploration instruments. Refer to the subsurface exploration logs for additional water level data. Water level readings have been made in the subsurface explorations at times and under conditions discussed herein. However, it must be noted that fluctuations in the level of the water may occur due to variations in season, rainfall, temperature, and other factors not evident at the time measurements were made and reported.
- 4) Possible perched water.

HALEY & ALDRICH, INC. 11/6/2015


TABLE II PAGE 1 OF 1


SUMMARY OF LABORATORY TEST RESULTS ASSOCIATED ELECTRIC COOPEATIVE, INC. 003 UNLINED POND AND 004 SLAG DEWATERING POND MARSTON, MISSOURI

_		Sample			Moisture				0.4	٥,	0.4	Tube Dry	UU	Triaxial		Co	nsolida	ation
Boring Designation	Sample Number	Depth (ft)	USCS Symbol	Material Type	Content (%)	LL	PL	PI	% Gravel	% Sand	% Fines	Density (pcf)	Moisture Content (%)	Dry Density (pcf)	S _u (tsf)	e _o ¹	C _c ¹	P _c ¹ (tsf)
HA-B1	S6	11.0-13.0	CL	Fill	22.8	42	20	22			92.7							
HA-B2	S11	28.0-30.0	SM	Natural Soil	20.7				0.0	67.9	32.1							
HA-B3	S3	5.0-7.0	CL	Fill	26.7				0.0	4.8	95.2							
HA-B3	S7	13.0-15.0	CL	Fill	22.8	47	22	25			95.5							
HA-B3	S10	28.0-30.0	CH	Natural Soil	36.1						98.4							
HA-B4	U2	5.0-7.0	ML	Boiler Slag	32.9				0	0.7	99.3	80.0				1.08	0.23	1.1
HA-B4	S15	48.0-50.0	SP	Natural Soil	18.1				0.5	95.1	4.4							
HA-B5	U1	10.0-12.0	ML	Fly Ash	38.3				0.0	1.4	98.6	71.7				1.04	0.18	2.0
HA-B5	U2	20.0-22.0	ML	Fly Ash	34.6							77.8	41.0	73.1	0.3	1.14	0.19	2.8
HA-B6	S4	7.0-9.0	CL	Fill	22.6	45	21	24			94.4							
HA-B6	S7	13.0-15.0	CL	Natural Soil	21.1	39	20	19			96.5							
HA-B7	S6	11.0-13.0	CH	Fill	22.5	59	20	39			87.3							

Notes:

1. e_o = Void Ratio, C_c = Compression Ratio, P_c = Estimated Preconsolidation Pressure

LEGEND

DESIGNATION, LOCATION AND GROUND SURFACE ELEVATION OF TEST BORINGS PERFORMED BY BULLDOG DRILLING, INC.
OF DUPO, ILLINOIS DURING THE PERIOD 14 SEPTEMBER 2015
TO 22 SEPTEMBER 2015. DESIGNATIONS THAT INCLUDE AN "A"
CORPESSOR CORRESPOND TO OFFSET BORINGS PERFORMED IMMEDIATELY ADJACENT TO THE ORIGINAL BORING.

HA-C6
DESIGNATION, LOCATION AND GROUND SURFACE ELEVATION
OF CONE PENETROMETER SOUNDINGS PERFORMED BY
CONETEC, INC. OF WEST BERLIN, NEW JERSEY DURING THE
PERIOD 15 SEPTEMBER 2015 TO 17 SEPTEMBER 2015.

GEOLOGIC CROSS-SECTION LOCATION

APPROXIMATE POND EXTENT

NOTES

- 1. EXPLORATION LOCATION PLAN WAS PREPARED FROM AN AERIAL IMAGE PROVIDED BY AECI THAT WAS CONDUCTED BY PICTOMETRY INTERNATIONAL CORP BETWEEN OCTOBER 4-8, 2014.
 2. ELEVATIONS INDICATED ON THIS DRAWING ARE IN FEET AND REFER TO NAVD 1988 DATUM. HORIZONTAL CONTROL IS BASED ON MISSOURI STATE PLANE COORDINATE SYSTEM EAST ZONE.
 3. TECHNICAL MONITORING OF TEST BORINGS AND CONE PENETROMETER SOUNDINGS COMPLETED DURING THE PERIOD 14 SEPTEMBER 2015 TO 22 SEPTEMBER 2015 WAS PERFORMED BY HALEY & ALDRICH INC.
- SEPTEMBER 2015 WAS PERFORMED BY HALEY & ALDRICH, INC.
- AS DRILLED LOCATIONS AND GROUND SURFACE ELEVATIONS OF TEST
 BORINGS AND CONE PENETROMETER SOUNDINGS WERE DETERMINED IN THE
 FIELD BY SMITH & COMPANY ENGINEERS OF POPLAR BLUFF, MISSOURI BY OPTICAL SURVEY.

HALEY

ASSOCIATED ELECTRIC COOPERATIVE, INC. NEW MADRID POWER PLANT 003 UNLINED POND AND 004 SLAG DEWATERING POND MARSTON, MO

SUBSURFACE EXPLORATION **LOCATION PLAN**

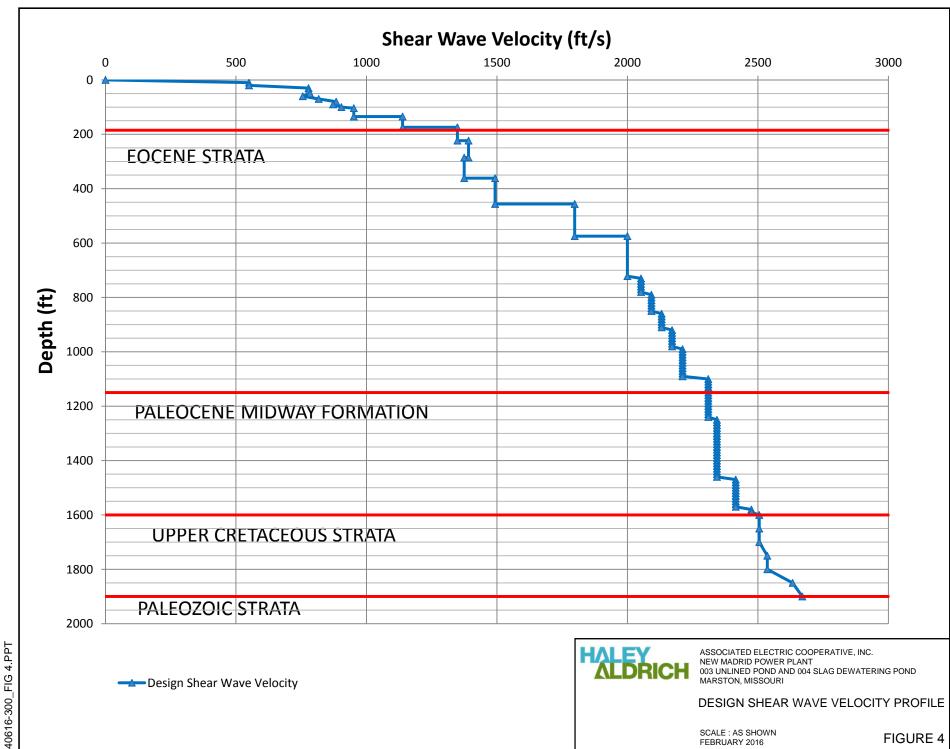
SCALE: AS SHOWN

FIGURE 2

APPROXIMATE ELEVATION 292 - 309r Light gray silty clay and sand; contains lignite. Alluv. Legend Tan silt and clayey silt. Loess Quaternary Major intervals with no samples U.C. Ferruginous, fine- to very coarse-sand and gravel. Light gray to buff, medium- to very fine-grained Jackson Sand and Gravel silty sand, interbedded with light gray clayey silt. Formation 115 Sand Oligocene Cockfield Formation Light gray to light brown silt and clay interbedded with medium- to fine-grained sand; Silt lignite common. Light gray to light buff clay and silt; contains Clay variable amounts of sand and lignite. Claiborne Group -170 Calcareous clay Cenozoic Dolomite Eocene Memphis Sand Unconformity Fine- to very coarse-grained, light gray-white **Tertiary** quartzose sand; contains pyrite, lignite, and rock fragments. Alluv. = Alluvium U. C. = Upland Complex O.B. Fm. = Old Breastworks Formation Medium to light gray silty clay and clayey silt Flour Island containing thin beds of fine- to very fine-grained Group sand; commonly contains lignite, pyrite, and Fm. Wilcox Fort Pillow Fine- to very coarse-grained quartzose sand; commonly contains lignite, pyrite, and mica. Sand Paleocene -850 D.B. Fm Light gray, sandy, micaceous silty clay. Midway Group Porters Creek Clay Steel-gray to dark gray, hard, micaceous clay; disseminated organic material common; locally mottled yellow-buff; locally fossiliferous; pyrite common; becomes calcareous and glauconitic near the base. Claytor Fm. Light green-gray, glauconitic, fossiliferous, clay interbedded with green-white fossiliferous marl. -1300Samples from the Owl Creek Formation missing, but geophysical logs indicate it is present. Owl Creek Fm. Fine- to coarse-grained sand, commonly containing pyrite, mica, and wood fragments, and traces of glauconite interbedded with steel-gray, soft, micaceous McNairy Upper Cretaceous Sand Mesozoic silty clay. Demopolis Massively-bedded, fossiliferous, argillaceous, gray marls. Formation Well-sorted, loose white sands interbedded Coffee with laminated to thin-bedded, brownish-gray carbonaceous clays with clean quartz Formation silt partings. -1600 Paleozoic White to dark-gray, fine- to coarse-Upper crystalline dolomite; locally recrystallized; Cambrian trace vuggy porosity; pyrite common; trace (?) quartz crystals.

NOTES

- 1. IMAGE REFERENCE: VAN ARSDALE AND TENBRINK (2000).
- 2. ELEVATIONS SHOWN ARE SPECIFIC TO THE NEW MADRID POWER PLAN SITE AND WERE ESTIMATED USING FIGURES FROM VAN ARSDALE AND TENBRINK (2000) AND ROSENBLAD (2007).
- 3. ELEVATIONS INDICATED ON THIS DRAWING ARE IN FEET AND REFER TO NAVD 1988 DATUM.



ASSOCIATED ELECTRIC COOPERATIVE, INC. NEW MADRID POWER PLANT 003 UNLINED POND AND 004 SLAG DEWATERING POND MARSTON. MO

GEOLOGIC COLUMN FOR THE NEW MADRID SEISMIC ZONE

APPROXIMATE SCALE: AS SHOWN FEBRUARY 2016

FIGURE 3

APPENDIX A

Test Boring Logs

ŀ		E Y	ICH			T	rest	BORING REPOR	RT		E	3or	inę	g N	lo.		HA	\-B	1	
Clie	ject ent ntracto	Ass	ociate		ric Co			Pond, New Madrid Power	Plant, Marston, Mis	souri	Sh St	art	No 2). 1 22 S	of ept	5-30 3 eml	ber			
			C	Casing	Sam	pler	Barrel	Drilling Equipment	and Procedures			nish iller	•			ites	Jei	20.	LO	
Тур		meter (HSA	9	operative, Inc. pler Barrel Drilling Equipment and I Rig Make & Model: CME 55 L6 Bit Type: Cutting Head Drill Mud: Polymer Casing: Spun Hoist/Hammer: Winch Auton	55 L6		Н		Rep). C	C. To	osca)9.3						
		Veight	`	4.25 								atun				D 8				
	nmer F	all (in.	` '		3	-	-	Hoist/Hammer: Winch					N E :	249 1,09	,12 96,4					
(#	Slows n.	No. (ii.)	⊕ €	E 94	Symbol		VISU	IAL-MANUAL IDENTIFICATION	AND DESCRIPTION			avel	_	San	d			eld g		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Sy			structure, odor, moisture, optic	onal descriptions	,	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -								-SAND/GRAVEL ROAD	WAY FILL-											_
	3 4 4 4	S1 12	1.0 3.0	308.3 1.0	SM				with gravel (SM) mps 20	0 mm,	5	10	5	20	25	35				
-				306.3 3.0		N40 d	akiff a			of o:14	L.	<u> </u>	L.	<u> </u>		100	_	- 4	_	
-	3 4 5	S2 20	3.0 5.0	3.0	CL				OT SIIT						100					
- 5 -	2 3 5 5	S3 20	5.0 7.0	5.0	ML				n clay,					40	60					
-	2 3 4 6	S4 24	7.0 9.0	302.3 7.0	CL -	Med	lium stiff o	dark brown lean CLAY (CL), m	nps < 1 mm, no odor, m	oist		_				100	S	M	M	Н
- - 10 –	3 3 5 5	S5 15	9.0 11.0		CL	Simil	lar to S4									100	S	м	М	Н
	1 2 4 4	S6 24	11.0 13.0		CL	1		except intermixed with pock	ets of silt and seams of	fine					7	93				
- - 15 –	2 2 3 3	S7 24	13.0 15.0		CL	1		fine						100						
- 20 -	1 3 4 7	S8 24	18.0 20.0		CL	Simil	lar to S4, e	except gray-brown							100					
		Wa	ter Le	vel Data				Sample ID	Well Diagram			5	Sum	nma	ry					_
D	ate	Time Elapsed Depth (ft) to: O - Open End Rod Riser Pi						Filter Sand	Overl Rock			•	•	5	50.0)				
9/2	2/15	Time (hr.) Bottom of Hole Water of Hole U - Undisturbed Sample Scree Filter U - Undisturbed Sample Scree Scree Filter Cuttin Grout						Grout	Samp	oles	6				14S					
F1. 1	J T- : 1			Dilater	W. D	Danid	Q Clave	N. Nono Diagtic		Bori				High		НА	-B :	L		
	d Tests			Toughn	ess: L	- Low		m H - High Dry Str	ength: N - None L - Low	M - Me	diun	uiti n H	п - I - Н	⊓ıgr igh	V - '	Very	High	1		_
*No	te: Ma							ect observation within the lim sual-manual methods of th		by Hale	y &	Ald	Iric	h, Ir	ıc.					_

Н		.EX	ICH	1		TEST BORING REPORT	F	ile		4	1061	L6-30		-B1	L
					<u></u>		+	She avel	_	lo. San	2 d	of		ield	— Te
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
25	2 3 4 5	\$9 24	23.0 25.0	202.2	CL	Similar to S4, except gray-brown -FILL-						100	S	М	М
				283.3 26.0		Note: Drill cuttings indicate alluvial soils at 26.0 ft.									
30 -	1 1 3 4	S10 20	28.0 30.0	_	CL	Soft light brown lean CLAY (CL) with interbedded seams of fine sandy silt, mps <1 mm, no odor, wet -ALLUVIAL DEPOSITS-						100			
35	6 6 12 17	S11 24	33.0 35.0	276.3 33.0	SM	Medium dense light brown silty SAND (SM), mps 1 mm, no odor, dry -FLUVIAL DEPOSITS-					60	40			
40 —	9 11 17 25	S12 20	38.0 40.0	-	SM	Medium dense light brown silty SAND (SM), mps 2 mm, well stratified, no odor, dry			5	70	25				
						-FLUVIAL DEPOSITS-									
45	11 11 12 14	S13 20	43.0 45.0		SM	Similar to S12			5	80	15				
						Note: Drill action indicated possible gravel layer at approximately 46.0 ft. Lost approximately 100 gallons of drill fluid from 46.0 to 48.0 ft.									
-	9 10 12 17	S14 24	48.0 50.0	_	SM	Similar to S12			5	75	20				

İ	HA	EY DR	ICH	1		TEST BORING REPORT			_	No :				-B1	•	
	S	-i-		æ	-			avel		o. Sand		OI		eld	Tes	
€	in Bo	S :E	E €	E 8 = 1	df.	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION			_					S		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 50				259.3 50.0		BOTTOM OF EXPLORATION 50.0 FT										
						Note: Borehole grouted upon completion.										
\vdash														D1		-

Proj Clie	ject	Ass	g De	water	ectr	ic Co	and U		Pond, New Madrid Powe		Marston, Mis.	souri	Fil Sh	e N	o. : No). 1 !1 Se	616- of	-300 4 mb	er 2	015	5
				Casin		Samp	oler	Barrel	Drilling Equipmen	t and Pr	ocedures			nish iller			epte Gat		er 2	015	,
Туре	е			HSA		S			Rig Make & Model: CMI				l				. To		10		
		meter	(in.)	4.25	,	1.37	75		Bit Type: Cutting Head Drill Mud: Polymer					eva			300				
Ham	nmer \	Veight	(lb)			140	0	-	Casing: Spun				_	tun cati			AVE ee Pl				_
Ham		all (in	Hoist/Hammer: Winch Automatic Hammer: Winch Automatic Hamper: Winch Automati	itic Hammer						,425 6,67											
£	ows	.) (.i	വ≨	<u> </u>	(E)	loqu		VISU	·		ESCRIPTION		_	avel	,	Sanc			Fiel		25
Depth (ft)	Sampler Blows per 6 in.	Sample I & Rec. (i	Sample Denth (Stratun	Elev/Depth	USCS Syn		(Density	structure, odor, moisture, opti	onal des	criptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Ullataricy	Plasticity	ומסנוסונץ
0 -									SAND/GRAVEL ROAD	WAY FIL	L-										
	1 2 3			'	9.2 1.0	CL			rganic fibers	AY (CL), 1	mps <1 mm, no	odor,					1	00			
-	3					CI	C::I-											00			
	3 4 5					CL	Simila	ar to S1, 6	except with 15% cinders and	i siag pa	rticles by volum	e						00			
5 -	3 3 5 7					CL	Simila	ar to S1, e	except trace cinders and sla	g particle	es						1	00 5	S N	1 1	1
	3 4 5 9					CL				s and sla	ng particles by						1	00			
10 -	2 3 4 6	S5 24	9.0			CL			gray to gray-brown lean CLA rganic fibers	Y (CL), m	nps < 1mm, no o	dor,					1	00 5	S N	1 1	1
	2 3 5 7	S6 24	11.0 13.0			CL	Simila	ar to S5									1	00 :	S N	1 N	1
	2 3 4 5	S7 24	13.0 15.0			CL	Simila	ar to S5									1	00 5	5 N	1 1	1
15 -	2 3 3 4	S8 24	15.0 17.0			CL	Simila	ar to S5									1	00			
				282 18	2.2 3.0		Note	: Sands o	bserved on auger flights at		mately 18.0 to 1	9.0 ft.					+				_
									-ALLUVIAL DEPO	SHS-											
20 _	<u> </u>	Wa	ater I	l _evel [Data	<u>_</u>			Sample ID	W	ell Diagram			<u> </u>	Sum	ımaı	ry	1	<u> </u>		ᆜ
D	ate	Time	Ela	apsed		Depth	n (ft) to Bottom		O - Open End Rod		Riser Pipe Screen	Overl	bur					5.0			
			Tim	e (hr.)			of Hole	Water	T - Thin Wall Tube U - Undisturbed Sample	H	Filter Sand	Rock			(ft	:)					
-	1/15 2/15	06:45						43.0 40.5	S - Split Spoon Sample	A A	Cuttings Grout Concrete	Samp) .			3S - A-	B2		_
				ייים	to		Doniel 1	C Cla	N None Bleefie		Bentonite Seal					Hich					_
Field	d Tests	:		Tou	ghne	y:R-f ess:L- es)isde	Low I	S - Slow I <u>M - Mediur</u>	N - None Plastic m H - High Dry St	aty: N - rength: N	Nonplastic L - Lo N - None L - Low	w M-N M-Me	/ledii diun	um 1 H	H - - H	High igh	V - V	ery F	ligh		

ŀ		TEST BORING REPORT						Boring No. HA-B2 File No. 40616-300								
					ō		Sheet No. 2 of Gravel Sand						Field Te			
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	ě	Medium		% Fines		Ś		
20 -	2 3 5 7	S9 24	20.0 22.0		SM	Loose light brown silty SAND (SM) with frequent interbedded layers of gray-brown silt, mps 1 mm, stratified, no odor, dry						40				
-						-ALLUVIAL DEPOSITS-										
-	2 4 7 10	S10 18	23.0 25.0	277.2 23.0	CL -	Medium dense gray-brown lean CLAY (CL) with frequent interbedded seams and layers of silty fine sand, mps 1 mm, well stratified, no odor, moist					5	95			_	
25				274.7 25.5											_	
-	4 6 9 11	S11 20	28.0 30.0	-	SM	Medium dense light brown silty SAND (SM) with interbedded seams of silt and fine sand, mps 1 mm, no odor, moist					68	32				
30 -				_												
-	11 14	\$12 15	33.0 35.0	267.2 33.0	SP	Medium dense light brown poorly graded SAND (SP), mps 2 mm, no odor, moist				40	60					
35 -	15 17		33.0			-FLUVIAL DEPOSITS-										
					65					60	25					
40_	7 10 11 13	S13 13	38.0 40.0		SP	Similar to S12, except with frequent seams of naturally occurring lignite particles to fragments			5	60	35					
	9 10 10 13	S14 15	43.0 45.0	257.2 43.0	SM	Medium dense light brown silty SAND (SM) with interbedded seams of silt and fine sand, mps 1 mm, well stratified, no odor, wet					60	40				
45 -	13			_												
-	3 4	S15 12	48.0 50.0	251 2	SM	Medium dense dark gray silty SAND (SM), no odor, wet					60	40				
	8 9			251.2 49.0	SP -	Medium dense gray poorly graded SAND (SP), mps 3 mm, no odor, wet	Τ-	Τ-	80	20	Τ-	Γ-	\vdash			

S17 S16 S17 S17 S17	16 53.0	Stratum Change Elev/Depth (#)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) Note: Drill action indicated possible gravel at 52.0 to 53.0 ft.	S	shee avel	et N	lo. San	3 d	6-30 of seuil %	4	Plasticity Le	П
\$16 12	16 53.0	247.2		(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	_	_				% Fines	U		П
\$16 12	16 53.0	247.2		structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coars	% Fine	% Coars	Medit	% Fine	% Fines	Dilatano	Plasticity	
\$16 12	_	247.2		Note: Drill action indicated possible gravel at 52.0 to 53.0 ft.								T	
12 S17	_	247.2 53.0											
			SM	Medium dense gray silty SAND (SM), trace coarse to fine gravel, mps 2 mm, no odor, wet			5	80	15				
				-FLUVIAL DEPOSITS-									
		242.2 58.0	<u>sp</u> _	Medium dense gray poorly graded SAND (SP), trace limited fragments and particles, mps 3 mm, no odor, wet	<u> </u> -	_	10	90					_
\$18 14		_	SP	Similar to S17			30	65	5				
NR	68.0 R 70.0			Note: Drill action indicated possible gravel from 67.0 to 68.0 ft. No Recovery									
				Note: Drill action indicated possible gravel from 71.0 to 72.0 ft.									
S19 20			SP	Similar to S17, trace coarse to fine gravel, mps 15 mm			10	80	5				
			SP	Similar to S17, no lignite			10	90					
	S2		20 75.0 S20 78.0	75.0 75.0 820 78.0 SP	20 75.0 SP Similar to S17, no lignite	20 75.0 S20 78.0 15 80.0 SP Similar to S17, no lignite	20 75.0 SP Similar to S17, no lignite	20 75.0 SP Similar to S17, no lignite 10	20 75.0 SP Similar to S17, no lignite 10 90	20 75.0 SP Similar to S17, no lignite 10 90	20 75.0 SP Similar to S17, no lignite 10 90	20 75.0 SP Similar to S17, no lignite 10 90	20 75.0 SP Similar to S17, no lignite 10 90

11 11 12 2 2 11 11	12 S. 15 1 18 23 S. 14 1 17	521 18 8	Sample 0.588	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) Dense gray poorly graded SAND (SP), mps 3 mm, no odor, wet	+	avel	e e	o. San Wedium %	% Fine		_	Ś	Plasticity Plasticity
1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1	112 S. 115 1 18 23 23 S. 14 1	521 18 8	83.0	Stratum Change Change Elev/Depth		(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine				% Fines	Dilatancy	Toughness	Plasticity
1 1 1 1 1 2 2 1 1 1 1 1 1	12 S. 15 1 18 23 23 20 S. 14 1	18 {			SP	Dense gray poorly graded SAND (SP), mps 3 mm, no odor, wet			5	90	5				
2 1 1 2 35	15 1 18 23 23 20 S.114 117	18 {			SP	Dense gray poorly graded SAND (SP), mps 3 mm, no odor, wet			5	90	5				
2 1 1 1	14 1 17														
1 1 1	14 1 17		- 1			-FLUVIAL DEPOSITS-									
1 1 1	14 1 17					Note: Drill action indicated possible gravel from 87.5 to 88.0 ft.									
	18		88.0 90.0		SP	Dense gray well graded SAND with gravel (SP), mps 24 mm, no odor, wet		15	30	45	10				
						Note: Drill action indicated possible gravel from 91.0 to 92.0 ft.									
2			93.0 95.0		SP	Dense gray poorly graded SAND (SP), mps 3 mm, no odor, wet				80	20				
95				205.2 95.0		BOTTOM OF EXPLORATION 95.0 FT									+
						Note: Borehole grouted upon completion.									

H		B R	ICH			T	EST	BORING REPOR	RT		E	3or	inç	g N	lo.		H	A-B	3	
Proj Clie Cor		Ass	ociate		ric Co		Jnlined F tive, Inc.	Pond, New Madrid Powe	Plant, Marston, Miss	souri	Sh Sta	e N neet	No 1	. 1 .4 S	of ept	em	ber			
			C	Casing	Sam	pler	Barrel	Drilling Equipmen	and Procedures			nish iller			•	tes		20.	13	
Тур	е			HSA	S	5		Rig Make & Model: CME	55 L6		Н8	§А Г	Rep				ano			
Insid	de Dia	meter	(in.)	4.25	1.3	75		Bit Type: Cutting Head Drill Mud: Polymer				eva				8.8 D 8				
Ham	nmer V	Veight	(lb)		14	10	-	Casing: Spun				atun cat				Plar				
Han		all (in	.)		3	0	-	Hoist/Hammer: Winch PID Make & Model: N/A						247 L,09						
Ţ)	swo .		⊕	£	loqu		VISU	AL-MANUAL IDENTIFICATION			Gra	avel	,	San				ield	Tes	st
o Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (USCS Symbol			/consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPRI	onal descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
	13 9 5 7	S1 12	1.0 3.0		CL	1	brown lea no odor,	,	coarse to fine gravel, n	nps 25					15	85				
	7 3 3	S2 15	3.0 5.0		CL		ar to S1, e	-FILL- except medium stiff, no grav sample	el, fly ash coating on ou	ter					20	80				
5 -	2 2 3	S3 15	5.0 7.0		CL		ium stiff b , moist	prown lean CLAY (CL), trace o	organic fibers, mps <1 m	ım, no				2	3	95				
	5 2 1 3 4	S4 12	7.0 9.0		CL	1	ar to S3, e sample	except soft, mottled, fly ash	coating on outer surface	e of										
10 –	2 1 3 4	S5 18	9.0 11.0		CL	Soft I	brown to	gray lean CLAY (CL), mps <1	mm, mottled, no odor,	moist						100				
	1 2 2 3	S6 15	11.0 13.0		CL	Soft I mois		an CLAY (CL), trace organic fi	bers, mps <1 mm, no oc	lor,					5	95				
15 –	1 1 3 4	S7 18	13.0 15.0		CL	Soft of mois	•	rown to gray-brown lean CL/	AY (CL), mps <1 mm, no	odor,					4	96				
	1 3 3 3	S8 16	17.0 19.0	289.8	CL	Medi	ium stiff b	orown lean CLAY with sand (CL), mps 1 mm, no odor	, wet					25	75				
				19.0																
20		Wa	ater Le	vel Data	 a			Sample ID	Well Diagram			٠	Sum	ıma	rv					
D	ate	Time	Elap	sed		h (ft) t Bottom		O - Open End Rod	Riser Pipe Screen	Overl	our					75.C)			
			Time	(hr.) of C	asing	of Hole	vvater	T - Thin Wall Tube U - Undisturbed Sample	Filter Sand	Rock			(ft	()						
9/1	4/15						43.0	S - Split Spoon Sample	Cuttings Grout	Samp						19S				
									Concrete Bentonite Seal	Bori						HΑ	۱-B	3		
	d Tests			Toughn	ess: L	<u>- Low</u>		m H - High Dry St i	ity: N - Nonplastic L - Lo rength: N - None L - Low	w M-N <u>M-Me</u>	ledii dium	um n H	H - I - H	High igh	า V -	Very	Hig	h		
*No	te: Ma	ximum No	particle	size (m oil ident	os) is d	determin	ned by dir	ect observation within the lim sual-manual methods of th	nitations of sampler size.	ov Halev	, &	ΔId	Iric	h. Ir	nc.					_

۲		.DR	ICH	1		TEST BORING REPORT	F	ile			0. 406: 2		00	∖-B 3	5	
_	s ×	o 🗀		£	0	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	+-	ave	_	Saı			_	ield	Τє	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
25 -	2 3 4 6	S9 18	23.0 25.0	-	CL	Note: Started mud rotary at 23.0 ft. Medium stiff light brown lean CLAY (CL), trace coarse to fine sand, mps 2 mm, no odor, wet						100				
						-ALLUVIAL DEPOSITS-										
30 -	2 2 2 4	\$10 20	28.0 30.0	280.8 28.0	CH -	Soft brown to gray-brown fat CLAY (CH) with fine sand in occasional partings, mps 1 mm, no odor, dry			1		4	96	N	M	M	
35 -	6 11 10 13	S11 24	33.0 35.0	275.8 33.0	SP	Medium dense brown poorly graded SAND (SP), mps 2 mm, no odor, moist, well stratified -FLUVIAL DEPOSITS-				10	0 90					
40 -	6 7 11 15	S12 20	38.0 40.0		SP	Similar to S11, non stratified				75	5 25					
				267.8 41.0		Note: Drill action indicated possible gravel at 41.0 ft.			+	+					_	
45	13 16 16 16 18	\$13 20	43.0 45.0		SW	Dense brown well graded SAND (SW), mps 3 mm, no odor, wet (coarse to fine gravel found at top 4 in . of spoon sample)			15	5 60	0 25					
70						-FLUVIAL DEPOSITS-										
	11 11 17 22	S14 18	48.0 50.0		SW	Similar to S13, except medium dense			15	5 55	5 30					
L		Soil ide	entificati	ion hased	l on vis	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	or	ing	No	 D.		HA	1 -B3		

H		.EX	ICH	1		TEST BORING REPORT	F	ile	ing No.	4	1061		00	-B3	,
	s N	o 🙃		(F)	ō	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	_	avel	_	lo. San	3 d	of	_	ield	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
55 -	7 8 13 16	S15 18	53.0 55.0	255.8 53.0	<u>S</u> P	Medium dense gray-brown poorly graded SAND (SP), mps 2 mm, no odor, wet				20	80				
						-FLUVIAL DEPOSITS-									
60 -	10 10 13 13	S16 20	58.0 60.0	250.8 58.0	SW	Medium dense gray-brown well graded SAND (SW), mps 5 mm, no odor, wet			20	65	15				
65 –	11 13 14 18	S17 22	63.0 65.0	245.8 63.0	<u></u> <u>S</u> P -	Medium dense gray-brown poorly graded SAND (SP), mps 2 mm, no odor, wet				35	65				
70 -	15 16 16 12	\$18 3	68.0 70.0	-	SP	Similar to S15, except dense, possibly pushing gravel (poor recovery)				20	80				
	9 13 14 15	S19 18	73.0 75.0	235.8 73.0	_sw_	Medium dense gray-brown well graded SAND (SW), mps 3 mm, no odor, wet			15	60	25				
75 -				233.8 75.0		BOTTOM OF EXPLORATION 75.0 FT Note: Borehole grouted upon completion to ground surface.									
														ı-B3	

Casing Sampler Barrel Drilling Equipment and Procedures Drilling Equipment and Procedures Drilling Equipment and Procedures H&A Rep. C. Toscano	Proj Clie Con	ject	Ass	g De	wateri	ectri	ic Cod	and U		Pond, New Madrid Pow		. Marston, Miss	souri	Sh Sta	e Neet	No 1	40 . 1 .7 Se	ept	4 eml	ber		
Second S					Casin	g	Samp	oler	Barrel	Drilling Equipme	nt and P	rocedures						•				
Datumer NAVD BB Datumer NAVD BB Datum	Туре	е			HSA		S							Н8	kA F	₹ер	. C	. To	sca	no		
Hammer Fall (in)	Insid	de Dia	meter	(in.)	4.25		1.37	75		Bit Type: Cutting Head	d											
	Ham	nmer V	Veight	(lb)			140	0	-	Casing: Spun			-									_
Section Sect			all (in	.)			30)	-			atic Hammer										
1	£	swo.	.) (.		- I	Œ	loqu		VISU	•		DESCRIPTION		Gra	vel	(Sano		<u> </u>			Tes
1	Depth (ft)	Sampler Bl per 6 in	Sample N & Rec. (ii	Sample	Stratum	Elev/Depth	USCS Sym			structure, odor, moisture, op	tional des	scriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Tonghness	Plasticity
Similar to S1	_	2 1					ML	interl	bedded s	eams and layers of mediun								15	85			
1 1 1 1 1 1 1 1 1 1	-	2 1					ML	Simila	ar to S1	-BOILER SLA	G-						5	15	80			
Note: Spoon dry Note: Spoon Note: Spo	5 -	1 1					ML	Simila	ar to S1									10	90			
1	=	1 1					ML	Simila	ar to S1, e	except no sand, wet (perch	ed groun	dwater)						5	95			
1 20 13.0 13.0 13.0 14 15 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16	W 10 -	/OH/24			1		ML			k brown SILT (ML), mps <1	mm, no	odor, wet (outsi	de of						100			
1		1 1 1			٠,	0	SM	cinde	ers and sla	ag particles			ns —			40	50	10				
WoH/24 "S8 15.0 15.0 CL Very soft brown lean CLAY (CL), trace wood particles, mps 2 mm, no odor, wet -ALLUVIAL DEPOSITS- 1 S9 18.0 CL Soft brown to orange-brown lean CLAY (CL), mps < 1 mm, no odor, moist Sample ID Well Diagram Summary Date Time Elapsed Time (hr.) Bottom of Casing of Hole Of Casing of Hole Screen 9/17/15 3.0 Sample ID Vell Diagram Summary O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Split Spoon Sample Value Level Data Sample ID Riser Pipe Screen Filter Sand Cuttings Grout Grout Concrete Overburden (ft) 95.0 Rock Cored (ft) Samples 23S Boring No. HA-B4	¥	1 1 1			0		SM	Simila	ar to S6 (ı	natural silt found in tip of s	poon)					20	70	10				
Water Level Data Date Time Elapsed Time (hr.) Soft brown to orange-brown lean CLAY (CL), mps < 1 mm, no odor, moist Sample ID Well Diagram Summary O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Split Spoon Sample Value Value Sample ID Vell Diagram Summary Overburden (ft) 95.0 Rock Cored (ft) Samples Samples Samples Samples Samples Samples Samples Samples A Concrete Boring No. HA-B4	15 _W	/OH/24	1" S8 24		0 15	.0	CL	,		vn lean CLAY (CL), trace wo	od partic	cles, mps 2 mm, i	าด						100			_
Water Level Data Date Time Elapsed Time (hr.) Somple ID Somple ID Well Diagram Summary O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Split Spoon Sample U - Undisturbed Sample S - Split Spoon Sample Well Diagram Summary Overburden (ft) 95.0 Rock Cored (ft) Samples 23S Boring No. HA-B4	-				-					-ALLUVIAL DEP	OSITS-											
Water Level Data Sample ID Well Diagram Summary Date Time Elapsed Time (hr.) Bottom For Casing of Hole 13.0 Sample ID Well Diagram Summary O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Split Spoon Sample S - Split Spoon Sample Well Diagram Summary Overburden (ft) 95.0 Rock Cored (ft) Rock Cored (ft) Samples 23S Boring No. HA-B4	-	1 2					CL					< 1 mm, no odor	.,					5	95			
Water Level Data Sample ID Well Diagram Summary Date Time Elapsed Depth (ft) to: Bottom of Hole Gasing Grout Concrete Boring No. HA-B4	20	2																				
Date Time (hr.) Bottom of Casing of Hole T - Thin Wall Tube T - Thi			W					,		Sample ID	W				S	Sum	ıma	ry				_
9/17/15 13.0 S - Split Spoon Sample S - Split Spoon S - Sp	Da	ate	Time	Ela	apsed	Bott	Depth om I	Bottom		•						•	•	9	5.0)		
S - Split Spoon Sample S - Split Spoon Sample Samples Samples Samples Samples Samples Samples Samples HA-B4	0/4	7/15		1 111	ie (iii.)	of Ca	sing									(ft	:)					
	9/1.	//15							13.0			Grout				_					1	
Field Tests: Dilatancy: R - Rapid S - Slow N - None Plasticity: N - Nonplastic L - Low M - Medium H - High									0.61	N. Niere		Bentonite Seal					1821		~	٠٠,	_	

ı		.DR	ICH	1		TEST BORING REPORT	F	ile			1061	L6-30		·D4	
_	s ×	0.0		(H)	ō	WOULAN MANUAL IDENTIFICATION AND DECORISE	_	avel	_	NO. San		of	_	eld	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
25 -	1 1 6 11	\$10 24	23.0 25.0	280.2	CL SP	Similar to S9 Medium dense light brown poorly graded SAND (SP), mps 2 mm, well stratified, no odor, moist -ALLUVIAL DEPOSITS-				40	60	100			
30 -	5 6 7 10	S11 24	28.0 30.0		SP	Medium dense light brown poorly graded SAND (SP) with frequent interbedded seams and layers of dark brown silty SAND, mps 1 mm, well stratified, no odor, moist				15	85				
35 -	3 4 7 8	S12 24	33.0 35.0		SP	Similar to S11				10	90				
40 -	7 8 13 19	\$13 20	38.0 40.0	266.2 38.0 263.2 41.0	SP	Medium dense light brown poorly graded SAND (SP), mps 2 mm, no odor, moist -FLUVIAL DEPOSITS-				40	60				_
45 -	8 10 11 12	\$14 18	43.0 45.0	71.0	SW	Medium dense light brown well graded SAND (SW), mps 3 mm, no odor, wet			20	65	15				
	10 10 15	S15 13	48.0 50.0	256.2 48.0	<u>sp</u> _	Medium dense light brown poorly graded SAND (SP), mps 2 mm, no odor, wet		<u> </u>	2	63	31	4			_

H		.EX	ICH	1		TEST BORING REPORT	F	ile	ing No.	_	1061	16-30 of	HA -	В4	
	S W	o 🗀		Œ	loc	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	•	avel	_	io. San		OT	Fie	eld ⁻	Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
50 -	7 7	S16 20	53.0 55.0	251.2 53.0	_sw_	Medium dense light brown well graded SAND (SW), mps 5 mm, no odor, wet, trace fine gravel			20	65	15				
55 -	10 12					-FLUVIAL DEPOSITS-									
60 -	7 10 10 12	S17 18	58.0 60.0	246.2 58.0	SP	Medium dense light brown poorly graded SAND (SP), mps 10 mm, no odor, wet, trace coarse to fine gravel			5	90	5		_	_	
65 -	10 10 16 18	\$18 24	63.0 65.0		SP	Similar to S17				60	40				
70 -	10 10 12 13	S19 6	68.0 70.0	236.2 68.0	-s w	Medium dense light brown well graded SAND (SW), mps 5 mm, no odor, wet, trace fine gravel			20	60	20	_	_		
75 -	16 17 18 22	\$20 18	73.0 75.0	231.2 73.0	— <u>s</u> p –	Dense gray-brown poorly graded SAND (SP), mps 2 mm, stratified, no odor, wet				60	40				
						Note: Drill action indicated possible occasional gravel layers up to 12 in. thick from 77.0 to 81.0 ft.									
						sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.			ng	<u> </u>			HA-	 B4	

ı		.EX	ICH	1		TEST BORING REPORT	F	ile l	No.	No	061	.6-3(of	HA	-B4	
(#)	Blows in.	(in.)	ole (#)	um ge oth (ft)	ymbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel	(San	d		Fi		Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
80 -															
85	11 10 9 10	S21 20	83.0 85.0		SP	Medium dense gray poorly graded SAND (SP), trace coarse to fine gravel, mps 20 mm, no odor, wet			10	75	15				
						-FLUVIAL DEPOSITS-									
90 —	9 10 11 17	S22 18	88.0 90.0	216.2 88.0	SW	Medium dense gray well graded SAND (SW), trace coarse gravel, mps 20 mm, no odor, wet		5	45	40	10		_	_	
-	10 14 12 15	S23 20	93.0 95.0	209.2	SW	Similar to S22			55	35	10				
95				209.2 95.0		Note: Borehole grouted upon completion. Pushed four undisturbed shelby tube samples in offset hole. See Test Boring Report HA-B4A for details.									

H		DR	ICI	4		•	TEST	BORING REPOR	RT		B	or	ing	j N	Ο.	I	HA-	·B4	ŧΑ	
Proj Clie Con		Ass	ociat		ctric Co		Unlined ative, Inc	Pond, New Madrid Power	Plant, Marston, Mis	souri	Sh Sta	art	No 1	. 1 7 S		1 eml	ber			
				Casing	San	npler	Barrel	Drilling Equipment	and Procedures			ish Iler			epte Gat		ber	20.	15	
Турє)			HSA	:	S		Rig Make & Model: CME	55 L6		Н8	A F	₹ер		. To		no			
nsid	e Dia	meter ((in.)	4.25	1.3	375		Bit Type: Cutting Head Drill Mud: Polymer			l	evat tum	tion		304 3VA	4.2 ገ ጾ				
Ham	mer V	Veight	(lb)		1.	40	-	Casing: Spun Hoist/Hammer: Winch	Automatic Hammor		_	cati	on	Se	ee P	lan				_
		all (in.)			0	-	PID Make & Model: N/A					E 1	.,09	,729 7,7					
€	3lows n.	S (ii)	<u>⊕</u>	E 9.	epth (ft) Symbol		VISU	IAL-MANUAL IDENTIFICATION	N AND DESCRIPTION			ıvel		Sand E	t			SS	Tes	
Depth	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change	Elew/Dept USCS Sy		(Density	r/consistency, color, GROUP N structure, odor, moisture, optic GEOLOGIC INTERPRE	onal descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
0 -	<u>., </u>						e: Augere on sample	d to shelby tube sampling de s.	pths without collecting	split-										-
-	P U S H	U1 12	3.0 5.0		ML	Bro	wn SILT (N	1L)												
5	Р	U2	5.0		ML	Dar	k brown S	ILT (ML)												
	U S H	24	7.0					. ,												
	P U S H	U3 0	7.0 9.0			No	Recovery													
10 -	P U S H	U4 0	9.0 11.0			No	Recovery													
15 –				289. 15.	2															
				15.	0			BOTTOM OF EXPLORATI le grouted upon completion. nal details.		НА-										
		10/-	41		-1-				Mall Diagram											_
	.1.			evel Da		th (ft)	to:	Sample ID O - Open End Rod	Well Diagram Riser Pipe	Over	hur		um) ff)			5.0	<u> </u>			-
Da	ate	Time		hr \	Bottom f Casing	Bottor of Hol	n Water	T - Thin Wall Tube	Screen Filter Sand	Rock			` '		1	.J.U	•			
9/18	3/15						Dry	U - Undisturbed Sample S - Split Spoon Sample	Cuttings Grout Concrete	Samp Bori		No).			4U IA -	·B4	A		_
Field	Tests	:	1				S - Slow		Bentonite Seal ity: N - Nonplastic L - Lo							,.				-
	o: Mo	ximum ı	particl					m H - High Dry Str rect observation within the lim	ength: N - None L - Low uitations of sampler size.	ıvı - Me	aium	<u> </u>	- Hi	gn	v - V	ery	High	1		

ŀ		D R	ICH			1	ГЕЅТ	BORING REPOR	RT		E	3or	inç	g N	0.		HÆ	A-B	5
Clie	ject ent ntracto	Ass	ociate		ric Co		Unlined Fative, Inc.	Pond, New Madrid Powe	r Plant, Marston, Mis	souri	Sh Sta	art	No 1	. 1 .5 S		2 eml	ber		
			C	Casing	Sam	pler	Barrel	Drilling Equipmen	t and Procedures			nish iller			epu Ga		oei	201	LO
Тур	е			HSA	S	;		Rig Make & Model: CMI			Нδ	&A F	Rep	. C	. To	sca	no		
Insid	de Dia	meter	(in.)	4.25	1.3	75		Bit Type: Cutting Head Drill Mud: Polymer				eva atun			31 IAV	6.1 D.8			
Han	nmer V	Veight	(lb)		14	10	-	Casing: Spun Hoist/Hammer: Winch	Automatic Hammer			cat	ion	S	ee F	lan			
Han		all (in	.)		3(0	-	PID Make & Model: N/A					E 1	L,09	,38. 6,3				
Œ	Blows in.	in.)	æ Œ	m Je th (ft)	Symbol		VISU	AL-MANUAL IDENTIFICATIO	N AND DESCRIPTION			avel		Sand				S	Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (USCS S)			/consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPR	onal descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
. 0 -	5	S1	1.0		ML	Med	lium dens	e black SILT with sand (ML),	mps 2 mm, no odor, dry	,					25	75			
	7 7 9	20	3.0					-FLY ASH-											
	4 4 5	S2 24	3.0 5.0		ML	Simi	lar to S1, e	except loose							25	75			
5 -	2 2 2	S3 20	5.0 7.0		ML	Simi	lar to S1, e	except very loose						10	30	60			
	2 2 1 2 2	S4 18	7.0 9.0		ML		sand, mps	own to dark brown SILT (ML) s 1 mm, no odor, moist, trac							10	90			
10 –	1 1 2 2	S5 18	9.0 11.0		ML	Simi	lar to S4, e	except wet to moist							10	90			
	1 1 1 1	S6 18	11.0 13.0		ML			except with frequent interbo s 2 mm, wet	edded seams of medium	to					20	80			
	1 1 1 1	S7 20	13.0 15.0		ML	Simi	lar to S4								10	90			
15 -	WOH 1 1	S8 24	15.0 17.0		ML	Note	lar to S4 e: Sample indwater.	moist to wet throughout er	ntire sample. May be pe	erched					10	90			
	WOH 1 2 1	S9 16	17.0 19.0	299.1 17.0	ML			except with interbedded lay rticles), mps 2 mm		 d				15	25	60		_	
	4	S10	19.0		ML	Simi	larto SA 4	-FLY ASH/BOILER except moist to wet	SLAG-						10	90			
20 -	1	18	21.0				5-7, (-0	55			
		Wa		vel Data		h (ft)	to:	Sample ID	Well Diagram Riser Pipe					ma					
D	ate	Time	Elap Time	(hr \ Bo	ttom asing	Bottom	1 Water	O - Open End Rod T - Thin Wall Tube	Screen	Overl Rock			•	•	5	0.0)		
9/1	5/15			OI C	asiriy	of Hole	43.0	U - Undisturbed Sample	Cuttings	Samp			י (ונ	•)	_ :	 19S			
								S - Split Spoon Sample	Grout Concrete Bentonite Seal	Bori	ng	No	Э.			НА	В!	5	
Field	d Tests	:	1				S - Slow M - Mediur		ity: N - Nonplastic L - Lo rength: N - None L - Low							/erv	Hinh		
*No	te: Ma	ximum	particle	size (mp	os) is d	determi	ined by dir	ect observation within the lin sual-manual methods of the	nitations of sampler size.							. J. y	ყ		

	À	-EX	ICH	1		TEST BORING REPORT	l F	ile	ing No	. 4	1061	L6-3	00	\-B!	,	
	S N	o 🙃		(#	ō	VICUAL MANUAL IDENTIFICATION AND DESCRIPTION	-	sne ave	_	NO. San		of		ield	Те	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
20 –	2															
	2 3 1 1	S11 18	21.0 23.0	_	ML	Very loose brown to dark brown SILT (ML) with frequent interbedded layers of black coarse to fine grained cinders and slag particles, mps 3 mm, no odor, wet					5	95				
	1 1 2 3	S12 18	23.0 25.0		ML	-FLY ASH/BOILER SLAG- Similar to S11					5	95				
25 -	1 2 1	\$13 18	25.0 27.0		ML	Similar to S11					5	95				
	1 1 1 1	S14 24	27.0 29.0		ML	Similar to S11					5	95				
30 -	WOH WOH 1 1		29.0 31.0		ML	Similar to S11					5	95				
	2 4 4 7	S16 24	33.0 35.0	284.1 32.0	СН	Medium stiff gray fat CLAY with fine sand in frequent partings (CH), mps 1 mm, no odor, moist					5	95	S	М	М	
35 -						-ALLUVIAL DEPOSITS-										
	3 4 4 7	S17 24	38.0 40.0	276.1	СН	Similar to S16 Note: Medium to fine sand found in tip of spoon.					5	95	S	M	M	
45 -	7 14 20 18 16	\$18 20	43.0 45.0	276.1 40.0	SP	Dense light brown poorly graded SAND (SP), mps 3 mm, no odor, wet				80	20					
						-FLUVIAL DEPOSITS-										
	15 12 14 26	S19 15	48.0 50.0	_	SP	Similar to S18				80	20					

	H	X	EY DR	ICH			TEST BORING REPORT	F	ile I	No.	No 4	061	6-30	00	-B5		
\vdash						<u>-</u>		_	shee avel	_	o. Sanc	_	Of		ield	Tec	\dashv
1	€	Blov in	No (in.	(£)	ge the contract of the contrac	ymp	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION				-				Ś		
-	Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 5	50				266.1 50.0		BOTTOM OF EXPLORATION 50.0 FT										\exists
- 5	- 1	3					BOTTOM OF EXPLORATION 50.0 FT Note: Borehole grouted to 65 ft upon completion. Pushed three shelby tube samples in offset hole at depths of 10.0 to 12.0 ft, 20.0 to 22.0 ft, and 27.0 to 29.0 ft. See Test Boring Report HA-B5A for details.										

D	ast.	.DN		1				BORING REPOR			Souri File No. 40616-300 Sheet No. 1 of 2												
Proj Clie	nt	Ass	ociate	ed Elec	ctric Co		Unlined lative, Inc	Pond, New Madrid Powe	r Plant, Marston, Mis	souri		eet	No.	1 (2	r 2(01!	5				
Cor	tracto	r Bul	Ī	Orilling								nish			pter								
			-	Casing	Sam	npler	Barrel	Drilling Equipmen			4	ller			Gate								
Гуре	Э			HSA	9	5		Rig Make & Model: CMI Bit Type: Cutting Head							Tos		<u> </u>		-				
nsic	le Dia	meter ((in.)	4.25	1.3	375		Drill Mud: Polymer				evat itum			316. AVD								
lam	ımer V	Veight	(lb)		14	40	- Casing: Spun Hoist/Hammer: Winch Automatic Hammer			Lo		on											
		all (in.)			0	-	PID Make & Model: N/A							385 6,345	5							
Œ	ows	(in.)	e Ê	Ę 0,4	Symbol		VISU	IAL-MANUAL IDENTIFICATIO	N AND DESCRIPTION			ivel		and	_		Field						
Depth (ft)	Sampler Blows per 6 in.	Sample N & Rec. (i	Sample Depth (ft)	Stratum Change	USCS Syn		(Density	v/consistency, color, GROUP N structure, odor, moisture, opt GEOLOGIC INTERPR	ional descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fines	Dilatancy	Toughness	2	Alution				
0 -							e: Augered on sample	d to shelby tube sampling de s.	epths without collecting	split-													
5 -	P U S H	U1 24	10.0 12.0		ML	Brov	vn to dark	s brown SILT (ML)															
15 -																							
20		Wa		evel Da				Sample ID	Well Diagram			S	Sumr	mar			<u>_</u>		-				
Da	ate Time Elapsed Time (hr.)				Bottom	th (ft) Botton	1 Mater	O - Open End Rod T - Thin Wall Tube	Riser Pipe Screen	Over			` '		29								
9/1	6/15			<u>` 1of</u>	Casing	of Hole	25.0	U - Undisturbed Sample	Filter Sand Cuttings	Rock Sam			(I T)	1	 31								
J/ 1	J, 13						25.0	S - Split Spoon Sample	Grout Concrete Bentonite Seal	Bori).			о А-В	5A						
			1		ncy: R-		1	1	city: N - Nonplastic L - Lo										-				

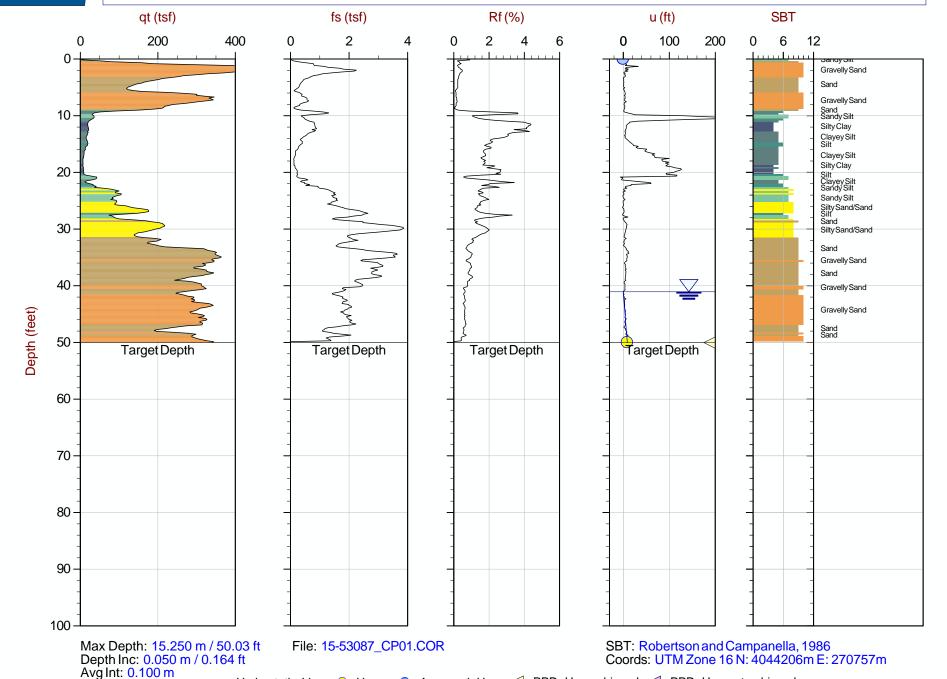
	HAI	Ę¥	ICL			TEST BORING REPORT		Bori						-B5/	A	
						TEOT BORNING REFORM	5	ile I Shee	et N	0.	2	of	2			
€	Slows 1.	Š.(. (æ (⊒	n e h (ft)	mbol	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel	_	San	d			ield ගූ		
Denth (#)	S	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Mediur	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 20 - -	P U S H	U2 24	20.0 22.0		ML	Brown to dark brown SILT (ML)										
- - 28	<u> </u>															
-	P U S H	U3 8	27.0 29.0	207.1	ML	Brown to dark brown SILT (ML) Poor recovery due to the presence of cinders and boiler slag.										
				287.1 29.0		BOTTOM OF EXPLORATION 29.0 FT Note: Borehole grouted upon completion. See Test Boring Report HA-B5 for additional details.										
																\perp

HA	-EX	ICH			TEST	BORING REPORT	E	3or	inç	g N	о.		ΗÆ	\-B	6	
Project Client Contract	Ass	ociate		ric Co	I and Unlined operative, Inc	Pond, New Madrid Power Plant, Marston, Missouri 	Sh St	art	No 1	40 2. 1 3.6 Se 3.7 Se	of epte	3 emb	oer			
		C	Casing	Sam	pler Barrel	Drilling Equipment and Procedures		nish iller	•		Ga1		Jei	20.	13	
Type Inside Dia	meter		HSA 4.25	S 1.3		Rig Make & Model: CME 55 L6 Bit Type: Cutting Head	Н		Rep). C	. To		no			
Hammer				1.3		Drill Mud: Polymer Casing: Spun Haint/Hammor: Winch Automatic Hammor		atun cat	ion	Se		lan				
Hammer	•	.)	 	30	0 -	Hoist/Hammer: Winch Automatic Hammer PID Make & Model: N/A	Cr	avel	E 1	245 _. 1 <u>,09</u> Sanc	eld					
Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol		JAL-MANUAL IDENTIFICATION AND DESCRIPTION y/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	1	% Coarse	E		% Fines		SS		Strength
0			306.4			SAND/GRAVEL ROADWAY-										
6	S1 24	1.0 3.0	1.0	CL	Stiff light brow	wn lean CLAY (CL), mps 1 mm, no odor, dry					10	90				
13						-FILL-										
5 4 6 7	S2 24	3.0 5.0		CL	, ,	CLAY (CL) interbedded with layers of brown SILT with os 1 mm, no odor, dry					10	90				
3 3 5 8	S3 24	5.0 7.0		CL	Medium stiff no odor, dry	gray lean CLAY with sand (CL), mps < 1 mm, no structure,					15	85				
3 3 6 8	S4 24	7.0 9.0		CL	Medium stiff no odor, dry	gray lean CLAY with sand (CL), mps <1 mm, no structure,					6	94				
3 6 - 10 - 6 8	S5 24	9.0 11.0		CL	Stiff light brow	wn lean CLAY with sand (CL), mps 1 mm, no odor, dry					15	85				
3 4 6 9	S6 24	11.0 13.0	296.4 11.0	CL	Stiff gray lean	CLAY (CL), mps <1 mm, stratified, no odor, dry -ALLUVIAL DEPOSITS-					1	100				
6 7 6 9	S7 24	13.0 15.0		CL	Stiff gray lean	CLAY (CL) with sand and fine sand in frequent partings					3	97				
15 4 5 9 9	\$8 24	15.0 17.0		CL	Similar to S7,	trace organic fibers					5	95				
20																
	Wa		vel Data	Don'th (ft) to:						nmaı						
Date	Time	Elap Time	(hr \ Bo	ttom	Bottom Water	T - Thin Wall Tube Screen Roc	rbur k Cc		•	•		5.0 				
9/16/15					40.0	S - Split Spoon Sample Grout	iples		_			20S H A	-В(
Field Test	 s:				Rapid S - Slow		Medi	um	H -	High	1					
	aximum		Toughn size (m	ess: L os) is c	- Low M - Mediu determined by di		ediun	n H	l - H	igh	V - \	/ery	High	1		

EDRICH	F	ile	No.	6-3	HA-B6 6-300 of 3						
0 0 9	<u> </u>	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	+	shee avel	_	lo. San		of		ield	Te
Sample No. Sample Depth (ft) Stratum Change	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
S9 20.0 24 22.0	CL	Medium stiff gray lean CLAY (CL) with frequent interbedded layers of fine sand (SM), mps 1 mm, no odor, moist					60	40			_
		-ALLUVIAL DEPOSITS-									
S10 25.0 24 27.0	CL	Medium stiff brown lean CLAY (CL) with interbedded layers and seams of silty sand, mps 1 mm, no odor, moist					5	95			
S11 28.0 24 30.0	CL	Note: Switched to mud rotary at 20.0 ft. Very soft yellow-brown to brown lean CLAY (CL), mps < 1 mm, no odor, moist						100			
276.4 31.0											
\$12 33.0 18 35.0	SP	Loose light brown poorly graded SAND (SP) with occasional layers of silt, mps 2 mm, well stratified, no odor, dry				20	80				
270.4 37.0											
S13 38.0 20 40.0	SP	Medium dense light brown poorly graded SAND (SP), mps 2 mm, stratified, no odor Note: Wet at tip of spoon.				60	40				
		-FLUVIAL DEPOSITS-									
S14 43.0 16 45.0	SP	Similar to S13				90	10				
S15 48.0 18 50.0	SP	Similar to S13				90	10				
		'									

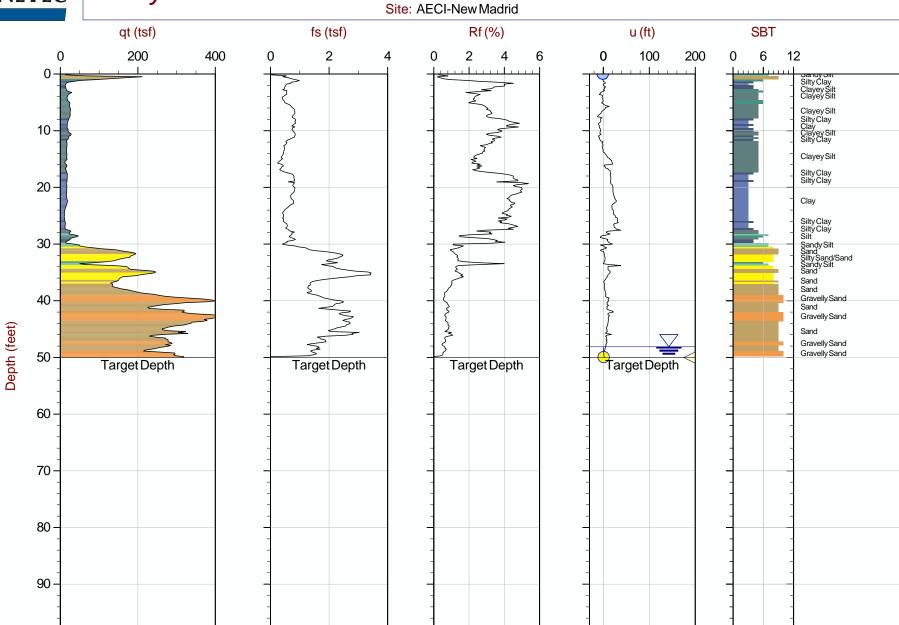
ľ		.DR	ICH	1		TEST BORING REPORT	F	ile	No.). 1061 3	6-3		-100	•
£	SWC	<u>o</u> (-		(#)	lod	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	+	ave	I	San	_	UI	F	eld	Te
9 Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
55 -	13 13 13 16	S16 18	53.0 55.0		SP	Similar to S13 -FLUVIAL DEPOSITS-				80	20				
60 -	9 9 15 17	S17 18	58.0 60.0	249.4 58.0	-sw	Medium dense light brown well graded SAND (SW), trace fine gravel, mps 5 mm, no odor, wet			20	60	20				_
65 -	10 11 13 15	S18 18	63.0 65.0		SW	Similar to S17, except trace shell fragments, stratified			25	60	15				
70 -	10 11 8 11	S19 12	68.0 70.0		SW	Similar to S17, well stratified			25	55	20				
	10 10 15 13	\$20 15	73.0 75.0	727 4	SW	Similar to S17, except trace coarse to fine gravel, mps 20 mm			35	55	10				
75 -				232.4 75.0		BOTTOM OF EXPLORATION 75.0 FT Note: Borehole grouted upon completion.									
	-													-B6	

Pro Clie Cor	•	As	socia		lecti	ric Co		Inlined F tive, Inc.	Pond, New Madrid Powe	er Plant,	Marston, Miss	Journ	Sh Sta		No 2). 1 !2 S	of ept	em	ber		
				Casir	ng	Samp	oler	Barrel	Drilling Equipmen		rocedures		Dri	ller				ites			
Тур	е			HSA	١	S			Rig Make & Model: CN Bit Type: Cutting Head			-							ano		
Insid	de Dia	meter	(in.)	4.25	5	1.37	75		Drill Mud: Polymer					eva itum)2.9 D 8			
		Neight	`			14	-	-	Casing: Spun Hoist/Hammer: Winch	Automa	atic Hammer		Lo	cati		S 249		Plar	1		
Han		Fall (in	.)			30)	-	PID Make & Model: N/						E 1	1,09	, 6,4				
(ft)	Slows n.	No.	<u>a</u> €	= = =	h (ft)	Symbol		VISU	JAL-MANUAL IDENTIFICATION	N AND D	ESCRIPTION	t t		ivel		San	d			eld g	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample	Stratum	Elev/Dept	USCS Sy			r/consistency, color, GROUP structure, odor, moisture, op GEOLOGIC INTERPR	tional des	criptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
•	12 12 7	\$1 15	1.0		0.4	SM			e black silty SAND (SM), mpers and slag particles	s 2.0 mn	n, no odor, dry,					30	50	20			
	3 5 5 5	S2 20	3.0 5.0		2.5	CL CL	Stiff	gray lean	-FILL- CLAY (CL), trace cinders an CLAY (CL) intermixed with : 15 mm, no odor, dry	d slag, m cinder an	ps 4 mm, no odo d slag fragment	or, dry s to		5	5	10	1	100 60			
5 -	3 4 7 8	S3 20	5.0 7.0			CL	Simil	ar to S2, ı	mps 5 mm						5	5	5	85			
	3 4 6 7	S4 24	7.0 9.0			CL	Simil	ar to S2							10	5	5	80			
10 –	2 4 4 6	S5 20	9.0	0		CL	Simil 3 mn		except medium stiff, trace	inders a	nd slag particles	, mps						100			
	3 4 7 8	S6 24	11. 13.0	٠,	1.9 1.0	CH	Med	um stiff g	gray-brown fat CLAY with sa	nd (CH),	no odor, dry	+					13	87		_	
	2 4 6 6	S7 24	13.0 15.0			СН	Simil	ar to S6, e	except gray to gray-brown,	no cinde	rs and slag							100			
15 -	2 3 3 3	S8 24	15.0 17.0			СН	Simil	ar to S6, e	except medium stiff									100			
	1 1 2 3	S9 24	17.0 19.0	0		СН	Simil	ar to S6, e	except moist, soft									100			
	1	S10	19.	٠,	3.9 9.0	CL	Very	soft lean	CLAY (CL), mps < 1 mm, no	odor, we	et		_				10	90		\dashv	_
20 -	1	24	21.0)-·					14.	ell Die				<u>.</u>						
	ate	Time	Ela	Level I apsed ne (hr.)	Bot	Depth ttom	n (ft) t Bottom of Hole		Sample ID O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample		ell Diagram Riser Pipe Screen Filter Sand	Overb Rock	Со	den red	(ft	•	2	27.0 			
9/2	2/15							Dry	S - Split Spoon Sample	9 9 6 2 4	Cuttings Grout Concrete	Samp).			12S	\-B	7	
	d Tests						Rapid				Bentonite Seal Nonplastic L - Lo										


H		EY. DR	ICH			TEST BORING REPORT	F	ile	No.	4	061	.6-30	00	-B7		
					- 0		_		_			of		ield	Tee	\dashv
E	Blov in .	S E	ple (ft)	um ige oth (f	ymb				g.	Ę				S		
Deptr	Sampler per 6	Sample & Rec.	Sam Depth	Strati Chan Elev/Dep	nscs s	(Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coars	% Fine	% Coars	% Mediu	% Fine	% Fines	Dilatanc	Toughne	Plasticit	Strength
20 -	1															
-	WOH 2 3	S11 24	21.0 23.0	281.9 21.0	SM	Loose brown silty SAND (SM), mps 1 mm, well stratified, no odor, dry		-			60	40				
-	3					-ALLUVIAL DEPOSITS-										
25 —	2 3 6 7	\$12 24	25.0 27.0		SM	Similar to S11, except with frequent seams of silt and fine sand, well stratified, moist					60	40				
-				275.9 27.0		BOTTOM OF EXPLORATION 27.0 FT									\dashv	_
						Note: Borehole grouted upon completion.										
	C Deptil (II)	Control of the second of the s	Sampler Blows (ii.) 28	WOH S11 21.0 24 23.0 3 3 24 27.0	WOH S11 21.0 281.9 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	Sompler Blow Condition C	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) WOH S11 21.0 281.9 21.0 SM Loose brown silty SAND (SM), mps 1 mm, well stratified, no odor, dry -ALLUVIAL DEPOSITS- SM Similar to S11, except with frequent seams of silt and fine sand, well stratified, moist	Similar to S11, except with frequent seams of silt and fine sand, well stratified, moist Signature Signature	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Solid Solid	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Solid Solid	Since No. Since No.	Since No. 2	TEST BORING REPORT File No. 40616-33 Sheet No. 2 of Sheet No. 3 of Sheet No. 2 of Sheet No. 2 of Sheet No. 2 of Sheet No. 2 of Sheet No. 3 of Sheet No. 2 of Sheet No. 3 of Sheet No. 2 o	TEST BORING REPORT File No. 40616-300 Sheet No. 2 of 2 S	TEST BORING REPORT File No. 40616-300 Sheet No. 2 of 2 VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) WOH S11 21.0 24 23.0 SM Loose brown silty SAND (SM), mps 1 mm, well stratified, no odor, dry -ALLUVIAL DEPOSITS- SM Similar to S11, except with frequent seams of silt and fine sand, well stratified, moist	TEST BORING REPORT File No. 40616-300 Sheet No. 2 of 2 VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Density/consistency, color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) WOH S11 21.0 24 23.0 SM Loose brown silty SAND (SM), mps 1 mm, well stratified, no odor, dry -ALLUVIAL DEPOSITS- SM Similar to S11, except with frequent seams of silt and fine sand, well stratified, moist

APPENDIX B

CPT Sounding Logs and Related Information



Job No: 15-53087 Date: 09:17:15 17:40 Site: AECI-New Madrid Sounding: CPT15-HAC1 Cone: 419:T1500F15U500

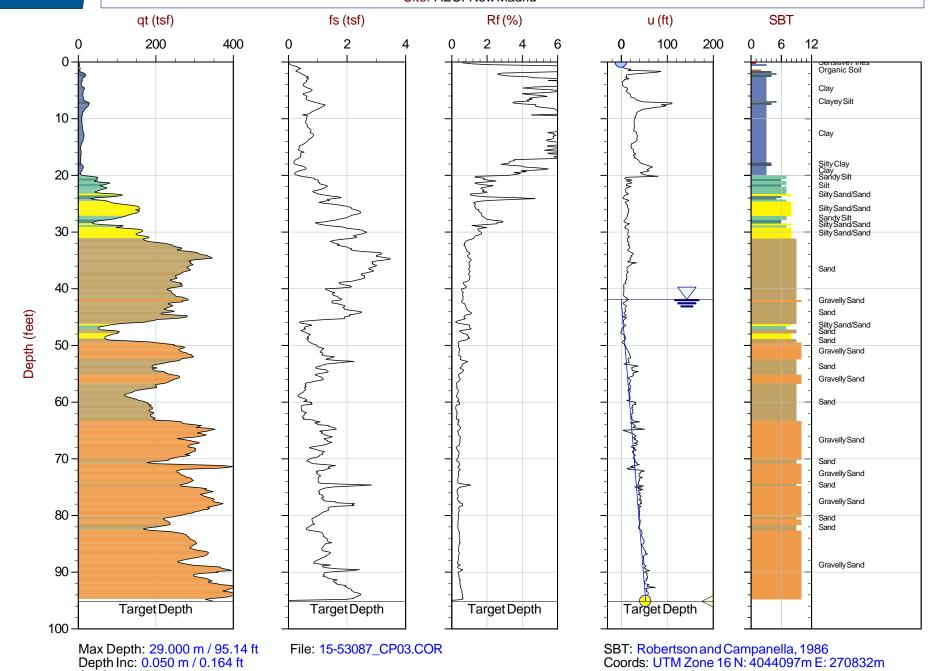
Job No: 15-53087 Date: 09:17:15 14:41 Sounding: CPT15-HAC2 Cone: 419:T1500F15U500

Max Depth: 15.250 m / 50.03 ftDepth Inc: 0.050 m / 0.164 ft

100

File: 15-53087_CP02.COR

SBT: Robertson and Campanella, 1986 Coords: UTM Zone 16 N: 4044000m E: 270758m

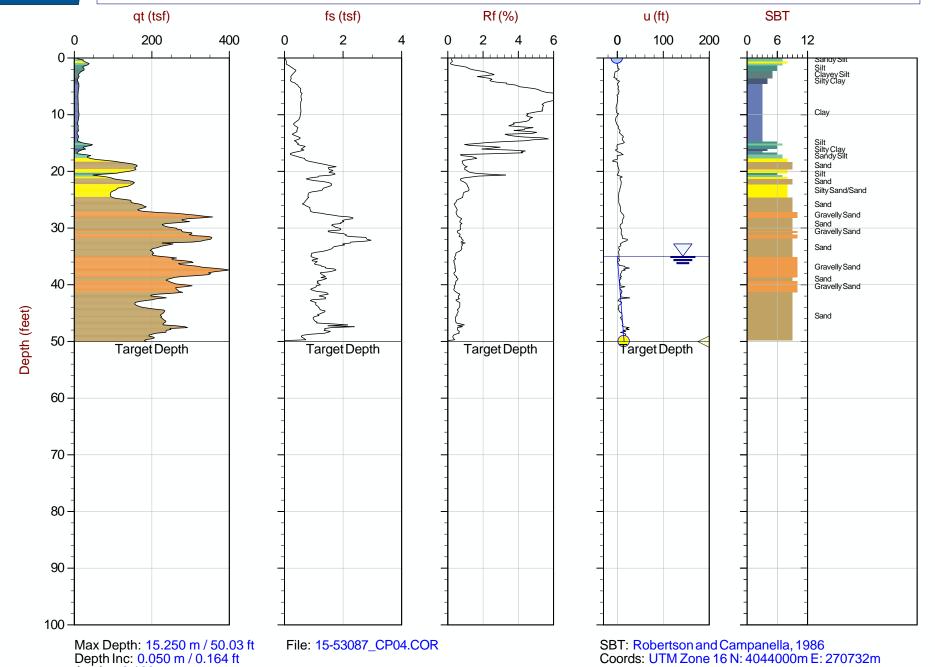

Avg Int: 0.100 m

Hydrostatic Line Ueq Assumed Ueq PPD, Ueq achieved PPD, Ueq not achieved

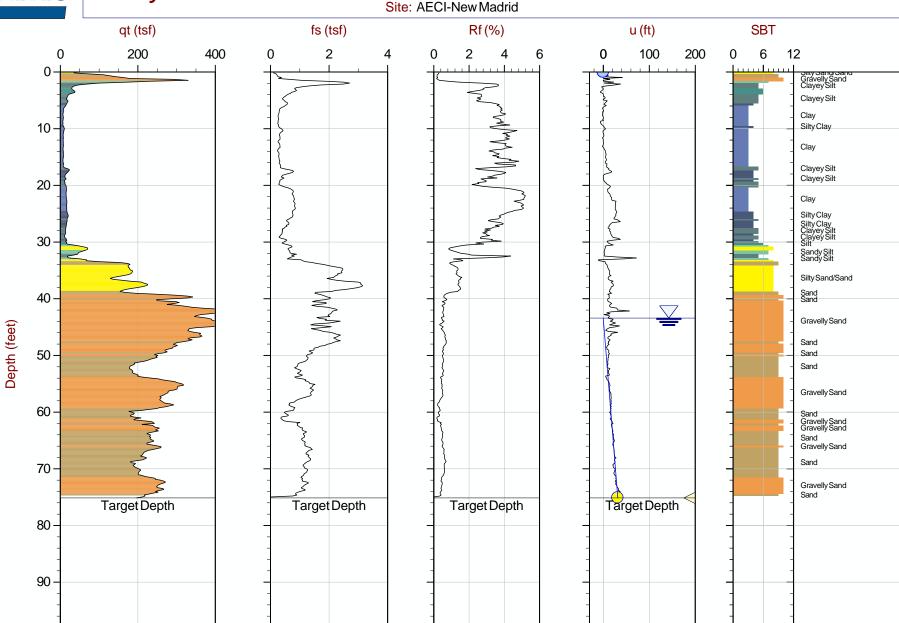
The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Job No: 15-53087 Date: 09:17:15 15:59 Site: AECI-New Madrid Sounding: CPT15-HAC3
Cone: 419:T1500F15U500

Avg Int: 0.100 m


Hydrostatic Line Ueq Assumed Ueq PPD, Ueq achieved PPD, Ueq not achieved

Avg Int: 0.100 m


Job No: 15-53087 Date: 09:17:15 13:17 Sounding: CPT15-HAC4
Cone: 419:T1500F15U500

Site: AECI-New Madrid

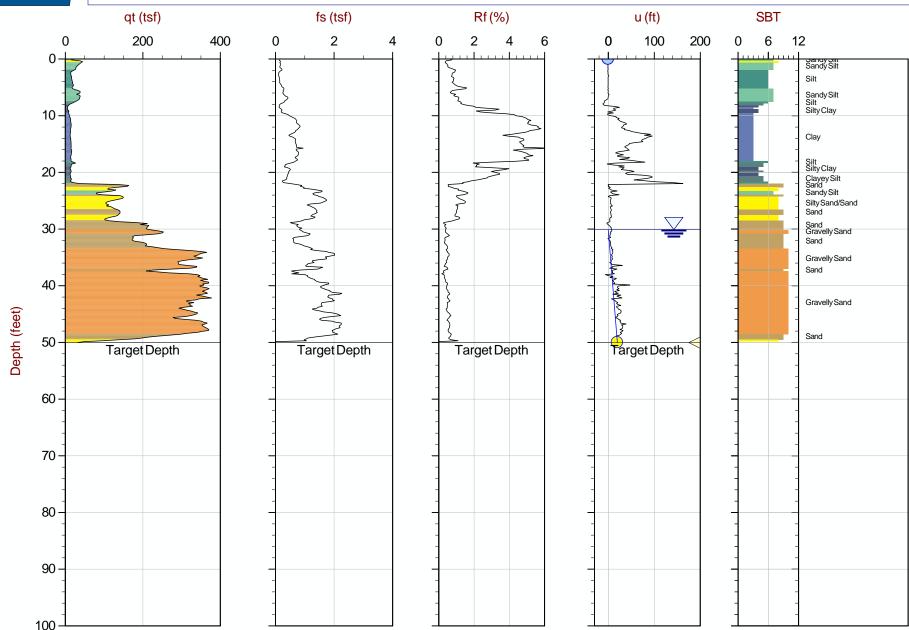
Job No: 15-53087 Date: 09:15:15 17:52 Sounding: CPT15-HAC5
Cone: 419:T1500F15U500

Max Depth: 22.900 m / 75.13 ft Depth Inc: 0.050 m / 0.164 ft

100

File: 15-53087_CP05.COR

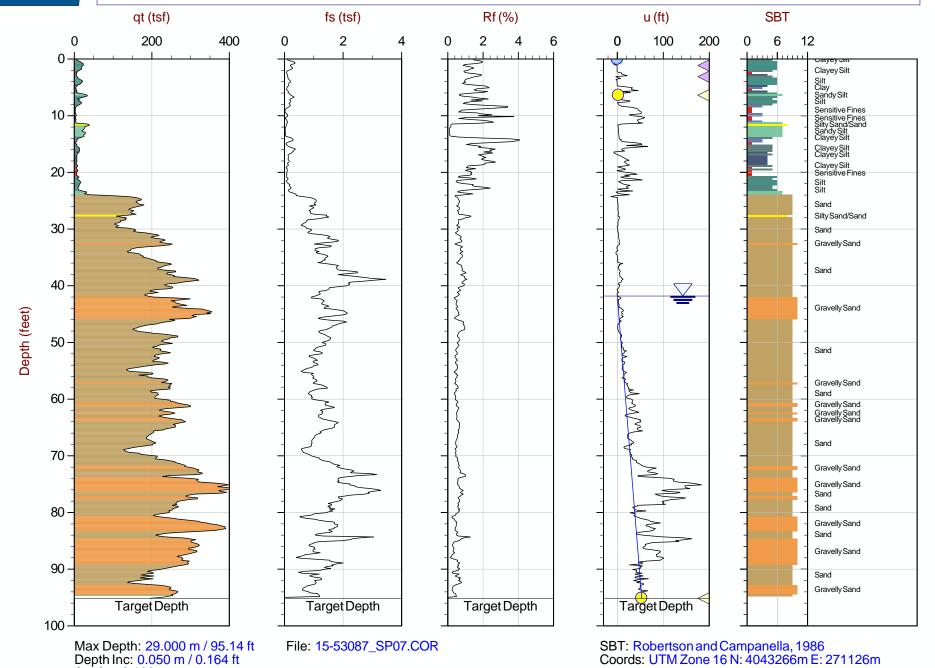
SBT: Robertson and Campanella, 1986 Coords: UTM Zone 16 N: 4043453m E: 270755m


Avg Int: 0.100 m

Hydrostatic Line Ueq Assumed Ueq PPD, Ueq achieved PPD, Ueq not achieved

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Job No: 15-53087 Date: 09:16:15 10:26 Site: AECI-New Madrid Sounding: CPT15-HAC6 Cone: 419:T1500F15U500

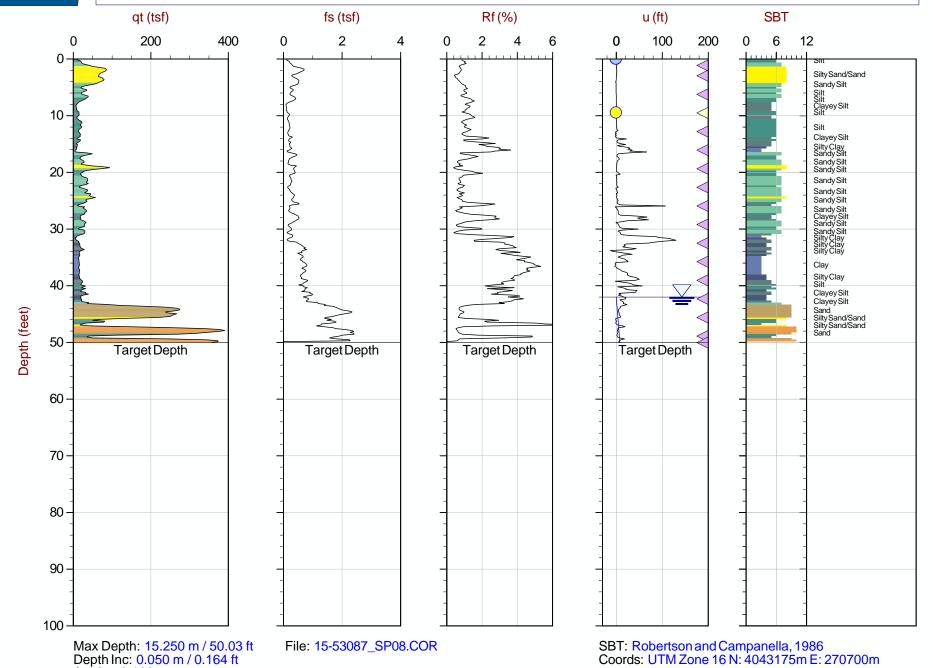


Max Depth: 15.250 m / 50.03 ft Depth Inc: 0.050 m / 0.164 ft Avg Int: 0.100 m

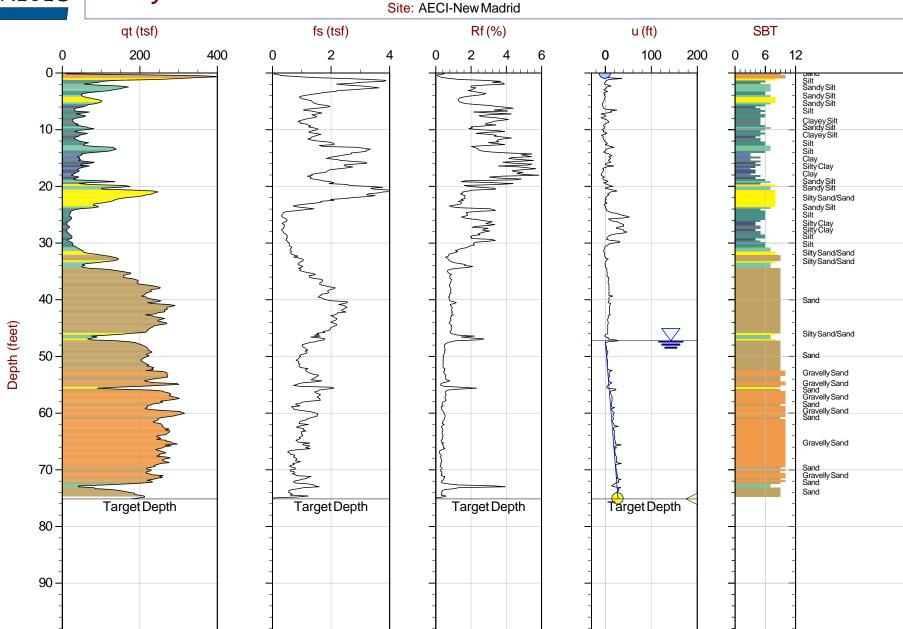
Job No: 15-53087 Date: 09:15:15 14:36 Sounding: SCPT15-HAC7 Cone: 419:T1500F15U500

Site: AECI-New Madrid

Avg Int: 0.100 m


Hydrostatic Line Ueq Assumed Ueq PPD, Ueq achieved PPD, Ueq not achieved

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.


Avg Int: 0.100 m

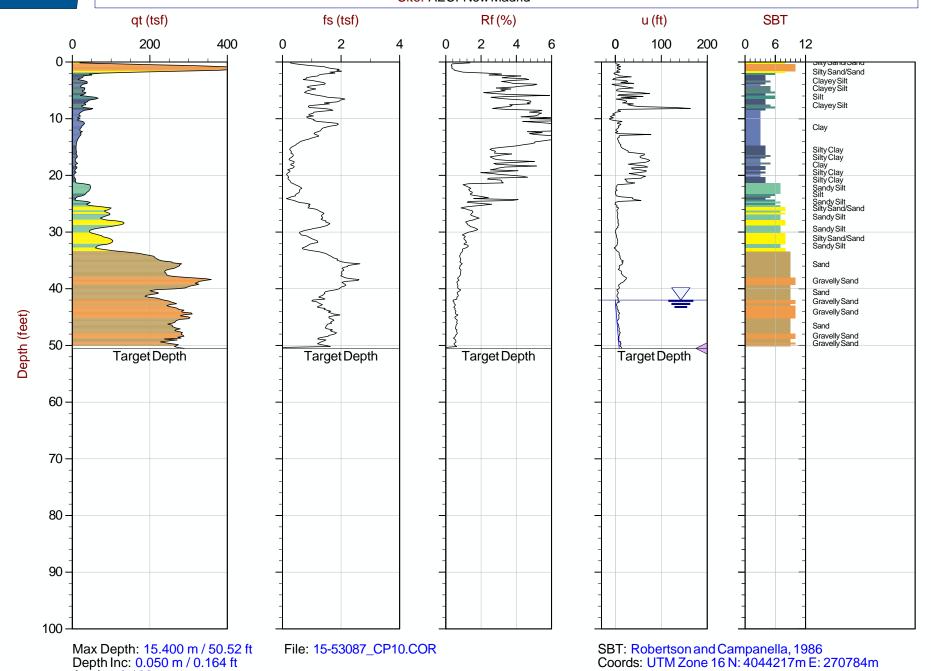
Job No: 15-53087 Date: 09:16:15 12:39 Site: AECI-New Madrid Sounding: SCPT15-HAC8 Cone: 419:T1500F15U500

Job No: 15-53087 Date: 09:17:15 11:57 Sounding: CPT15-HAC9 Cone: 419:T1500F15U500

Max Depth: 22.900 m / 75.13 ft Depth Inc: 0.050 m / 0.164 ft Avg Int: 0.100 m

100

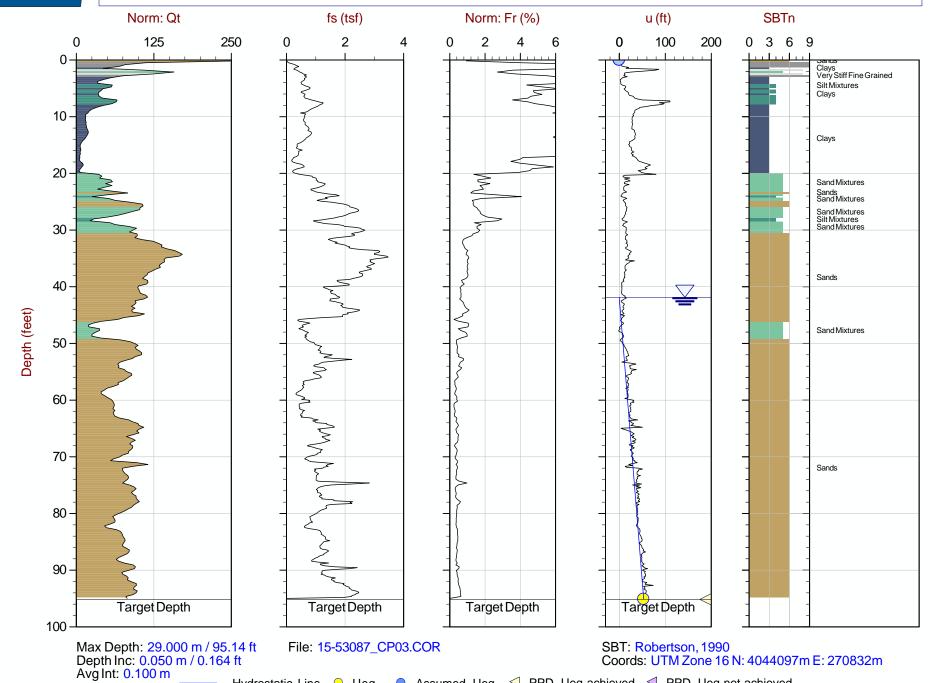
File: 15-53087_CP09.COR


SBT: Robertson and Campanella, 1986 Coords: UTM Zone 16 N: 4042932m E: 271425m

Hydrostatic Line ○ Ueq ○ Assumed Ueq ○ PPD, Ueq achieved ○ PPD, Ueq not achieved

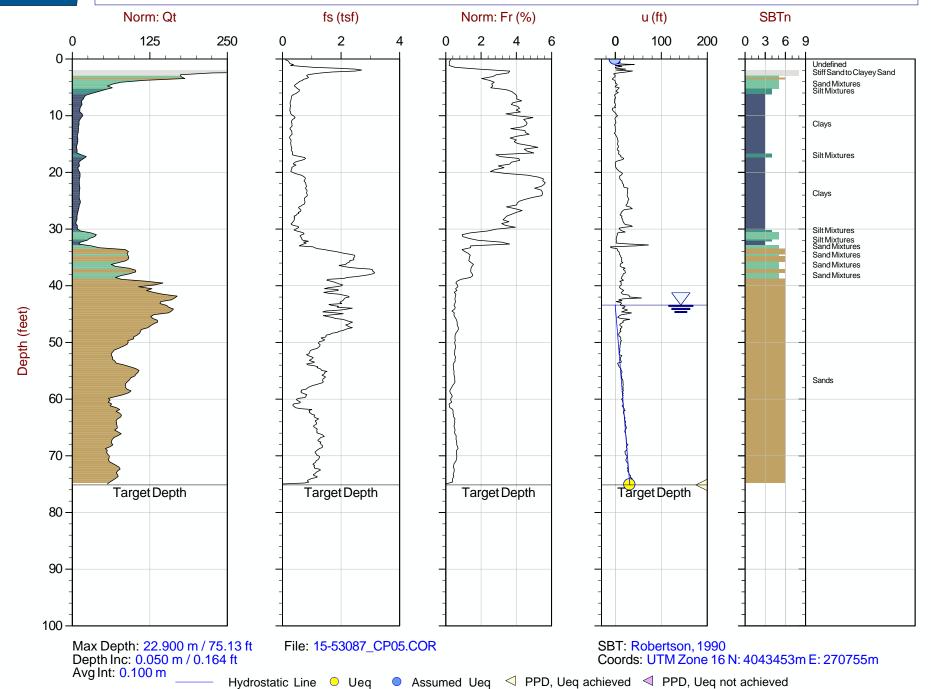
Avg Int: 0.100 m

Job No: 15-53087 Date: 09:17:15 17:40 Site: AECI-New Madrid Sounding: CPT15-HAC10 Cone: 419:T1500F15U500

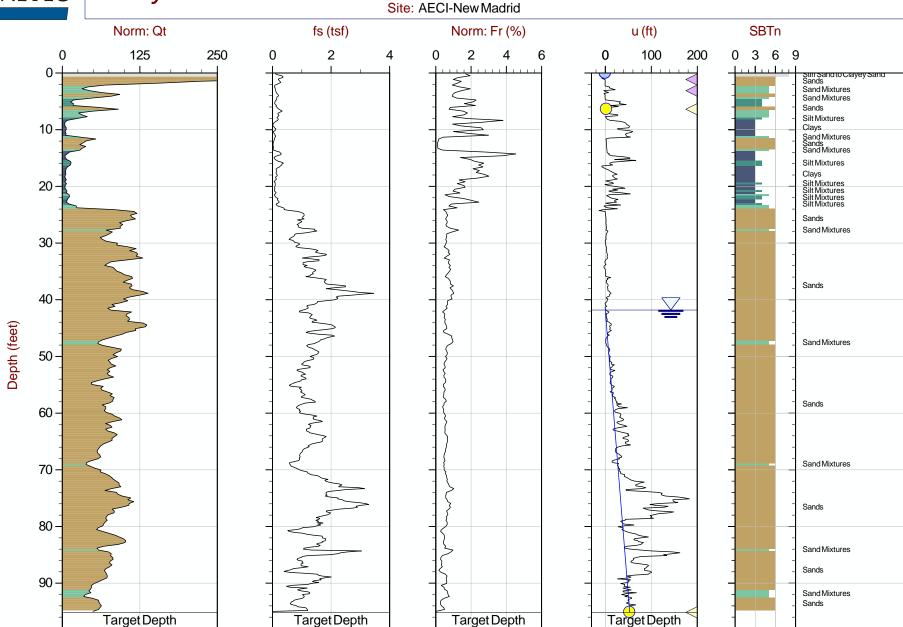


Normalized Cone Penetration Test Plots

Job No: 15-53087 Date: 09:17:15 15:59 Site: AECI-New Madrid Sounding: CPT15-HAC3
Cone: 419:T1500F15U500


Hydrostatic Line
Ueq
Assumed Ueq
PPD, Ueq achieved
PPD, Ueq not achieved

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.


Job No: 15-53087 Date: 09:15:15 17:52 Sounding: CPT15-HAC5 Cone: 419:T1500F15U500

Site: AECI-New Madrid

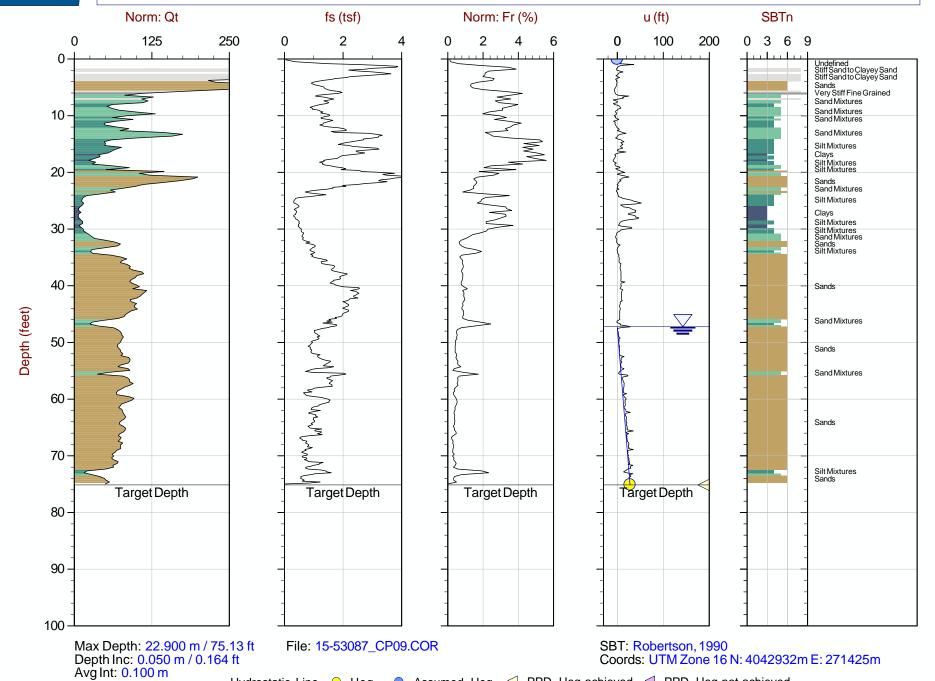
Job No: 15-53087 Date: 09:15:15 14:36 Sounding: SCPT15-HAC7 Cone: 419:T1500F15U500

Max Depth: 29.000 m / 95.14 ft Depth Inc: 0.050 m / 0.164 ft

Avg Int: 0.100 m

100

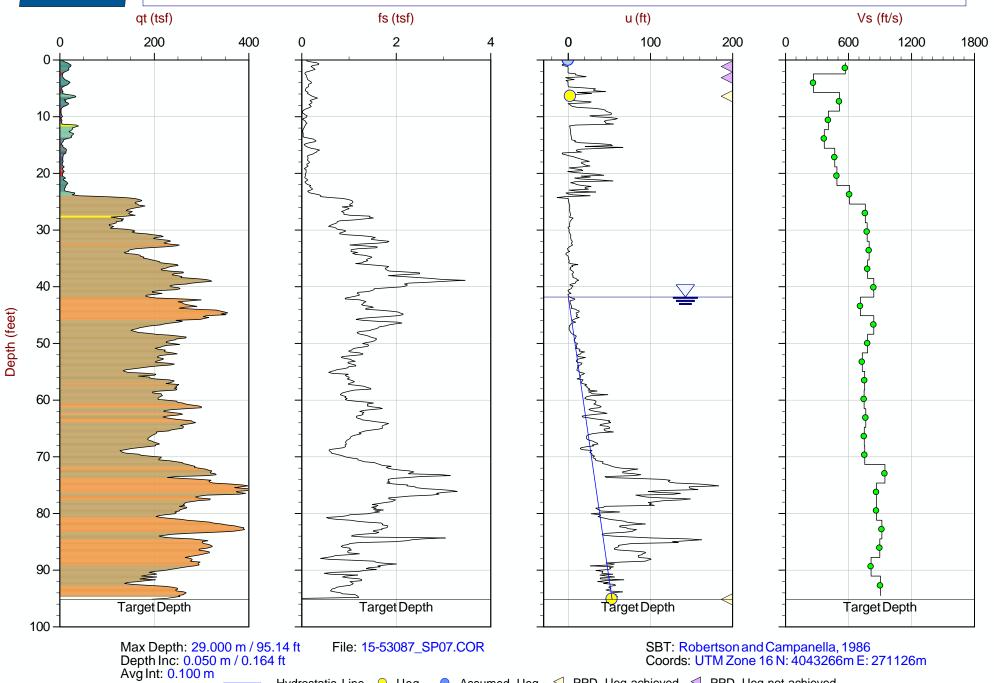
File: 15-53087_SP07.COR


SBT: Robertson, 1990 Coords: UTM Zone 16 N: 4043266m E: 271126m

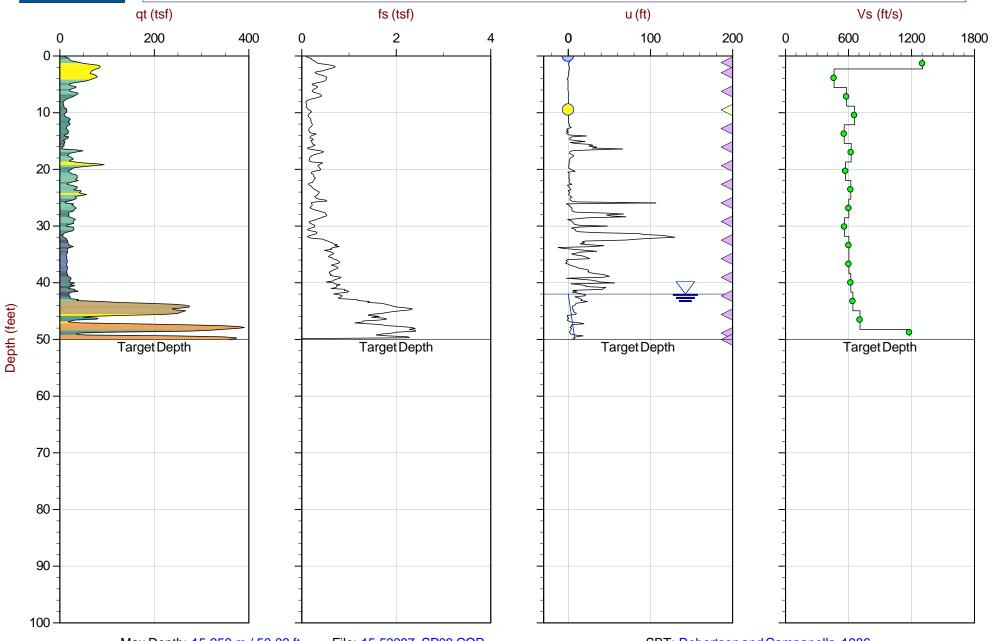
Hydrostatic Line ○ Ueq ○ Assumed Ueq < PPD, Ueq achieved < PPD, Ueq not achieved The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Job No: 15-53087 Date: 09:17:15 11:57 Sounding: CPT15-HAC9 Cone: 419:T1500F15U500

Site: AECI-New Madrid



Seismic Cone Penetration Test Plots


Job No: 15-53087 Date: 09:15:15 14:36 Site: AECI-New Madrid Sounding: SCPT15-HAC7 Cone: 419:T1500F15U500

Job No: 15-53087 Date: 09:16:15 12:39 Sounding: SCPT15-HAC8
Cone: 419:T1500F15U500

Site: AECI-New Madrid

Max Depth: 15.250 m / 50.03 ft Depth Inc: 0.050 m / 0.164 ft Avg Int: 0.100 m

File: 15-53087_SP08.COR

SBT: Robertson and Campanella, 1986 Coords: UTM Zone 16 N: 4043175m E: 270700m

Hydrostatic Line Ueq Assumed Ueq PPD, Ueq achieved PPD, Ueq not achieved The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Seismic Cone Penetration Test Tabular Results (Vs)

Job No: 15-53087
Client: Haley & Aldrich
Project: AECI - New Madrid
Sounding ID: SCPT15-HAC7

Date: 15-Sep-2015

Seismic Source: Beam
Source Offset (ft): 1.50
Source Depth (ft): 0.00
Geophone Offset (ft): 0.66

SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs

Tip	Geophone	Ray	Ray Path	Travel Time	Interval	
Depth	Depth	Path	Difference	Interval	Velocity	
(ft)	(ft)	(ft)	(ft)	(ms)	(ft/s)	
1.15	0.49	1.58				
3.12	2.46	2.88	1.30	2.29	570	
6.40	5.74	5.93	3.05	11.46	266	
9.68	9.02	9.15	3.21	6.25	514	
12.96	12.30	12.39	3.25	7.95	408	
16.24	15.58	15.66	3.26	8.84	369	
19.52	18.86	18.92	3.27	6.97	469	
22.80	22.15	22.20	3.27	6.67	490	
26.08	25.43	25.47	3.27	5.37	610	
29.36	28.71	28.75	3.28	4.31	760	
32.64	31.99	32.02	3.28	4.21	778	
35.92	35.27	35.30	3.28	4.11	797	
39.21	38.55	38.58	3.28	4.19	782	
42.49	41.83	41.86	3.28	3.90	841	
45.77	45.11	45.14	3.28	4.59	714	
49.05	48.39	48.42	3.28	3.90	841	
52.33	51.67	51.69	3.28	4.19	782	
55.61	54.95	54.97	3.28	4.48	731	
58.89	58.23	58.25	3.28	4.35	754	
62.17	61.52	61.53	3.28	4.38	749	
65.45	64.80	64.81	3.28	4.29	765	
68.73	68.08	68.09	3.28	4.37	750	
72.01	71.36	71.37	3.28	4.34	755	
75.30	74.64	74.65	3.28	3.46	947	
78.58	77.92	77.93	3.28	3.78	867	
81.86	81.20	81.21	3.28	3.78	867	
85.14	84.48	84.49	3.28	3.57	918	
88.42	87.76	87.78	3.28	3.65	898	
91.70	91.04	91.06	3.28	4.02	815	
95.14	94.49	94.50	3.44	3.81	904	

Job No: 15-53087
Client: Haley & Aldrich
Project: AECI - New Madrid
Sounding ID: SCPT15-HAC8

Sounding ID: SCPT15-HACE Date: 16-Sep-2015

Seismic Source: Beam
Source Offset (ft): 1.50
Source Depth (ft): 0.00
Geophone Offset (ft): 0.66

SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs

Tip Depth (ft)	Geophone Depth (ft)	Ray Path (ft)	Ray Path Difference (ft)	Travel Time Interval (ms)	Interval Velocity (ft/s)
1.15	0.49	1.58	(1.0)	(6)	(1.5)
2.95	2.30	2.74	1.16	0.89	1306
6.23	5.58	5.78	3.03	6.56	462
9.51	8.86	8.98	3.21	5.51	582
12.80	12.14	12.23	3.25	4.94	657
16.08	15.42	15.49	3.26	5.83	559
19.36	18.70	18.76	3.27	5.23	625
22.64	21.98	22.03	3.27	5.71	573
25.92	25.26	25.31	3.27	5.27	622
29.20	28.54	28.58	3.28	5.43	603
32.48	31.82	31.86	3.28	5.83	562
35.76	35.10	35.14	3.28	5.43	604
39.04	38.39	38.41	3.28	5.43	604
42.32	41.67	41.69	3.28	5.27	622
45.60	44.95	44.97	3.28	5.11	642
48.88	48.23	48.25	3.28	4.62	710
50.03	49.38	49.40	1.15	0.97	1181

Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots

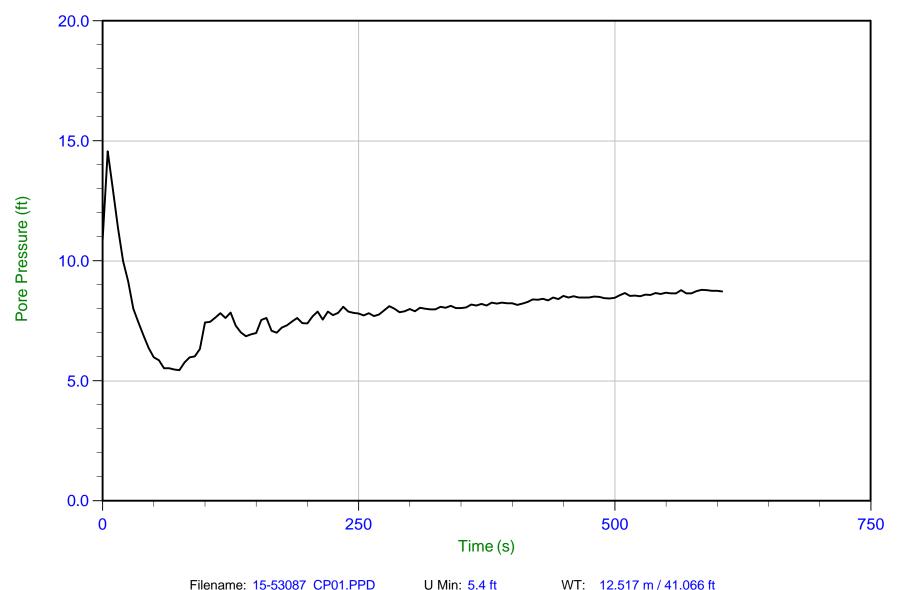
Job No: 15-53087 Client: Haley & Aldrich

Project: AECI - New Madrid, Marston, MO

 Start Date:
 15-Sep-2015

 End Date:
 17-Sep-2015

CPTu PORE PRESSURE DISSIPATION SUMMARY							
Sounding ID	File Name	Cone Area (cm²)	Duration (s)	Test Depth (ft)	Estimated Equilibrium Pore Pressure U _{eq} (ft)	Calculated Phreatic Surface (ft)	Estimated Phreatic Surface (ft)
CPT15-HAC1	15-53087_CP01	15	605	50.03	8.97	41.07	
CPT15-HAC2	15-53087_CP02	15	700	50.03	1.92	48.12	
CPT15-HAC3	15-53087_CP03	15	600	95.14	53.33	41.81	
CPT15-HAC4	15-53087_CP04	15	600	50.03	15.06	34.97	
CPT15-HAC5	15-53087_CP05	15	1000	75.13	31.73	43.40	
CPT15-HAC6	15-53087_CP06	15	300	50.03	19.92	30.11	
SCPT15-HAC7	15-53087_SP07	15	300	1.15			
SCPT15-HAC7	15-53087_SP07	15	300	3.12			
SCPT15-HAC7	15-53087_SP07	15	190	6.40	2.59	3.81	
SCPT15-HAC7	15-53087_SP07	15	600	95.14	53.33	41.81	
SCPT15-HAC8	15-53087_SP08	15	200	1.15			
SCPT15-HAC8	15-53087_SP08	15	150	2.95			
SCPT15-HAC8	15-53087_SP08	15	150	6.23			
SCPT15-HAC8	15-53087_SP08	15	150	9.51	0.34	9.17	
SCPT15-HAC8	15-53087_SP08	15	400	12.80			
SCPT15-HAC8	15-53087_SP08	15	600	16.08			
SCPT15-HAC8	15-53087_SP08	15	1700	19.36			
SCPT15-HAC8	15-53087_SP08	15	600	22.64			
SCPT15-HAC8	15-53087_SP08	15	400	25.92			
SCPT15-HAC8	15-53087_SP08	15	600	29.20			
SCPT15-HAC8	15-53087_SP08	15	7020	32.48			
SCPT15-HAC8	15-53087_SP08	15	5800	35.76			
SCPT15-HAC8	15-53087_SP08	15	900	39.04			
SCPT15-HAC8	15-53087_SP08	15	2400	42.32			
SCPT15-HAC8	15-53087_SP08	15	600	45.60		_	
SCPT15-HAC8	15-53087_SP08	15	200	48.88			
SCPT15-HAC8	15-53087_SP08	15	900	50.03			
CPT15-HAC9	15-53087_CP09	15	500	75.13	27.89	47.24	
CPT15-HAC10	15-53087_CP10	15	600	50.52			
Totals	29 dissipations		484.4 min				


Job No: 15-53087

Date: 17-Sep-2015 17:40:26 Site: AECI-New Madrid

Sounding: CPT15-HAC1

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

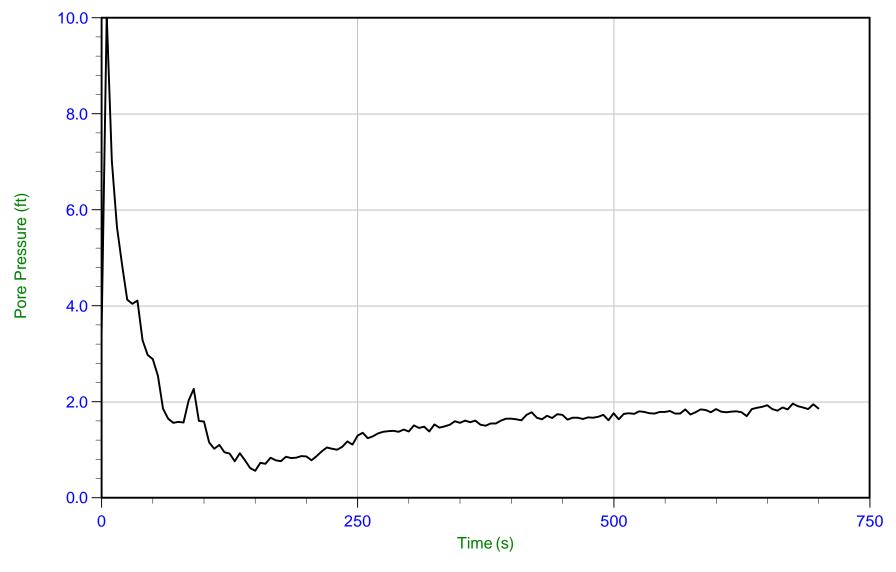
Filename: 15-53087_CP01.PPD Depth: 15.250 m / 50.032 ft

WT: 12.517 m / 41.066 ft

Duration: 605.0 s

U Max: 14.6 ft

Ueq: 9.0 ft


Job No: 15-53087

Date: 17-Sep-2015 14:41:36 Site: AECI-New Madrid

Sounding: CPT15-HAC2

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

Filename: 15-53087_CP02.PPD Depth: 15.250 m / 50.032 ft

U Min: 0.6 ft

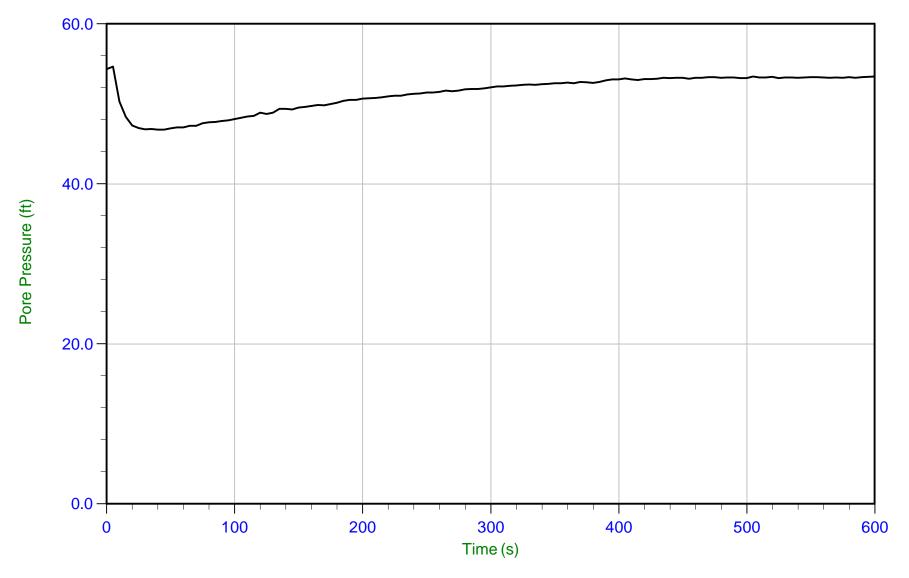
WT: 14.666 m / 48.116 ft

Duration: 700.0 s

U Max: 10.1 ft

Ueq: 1.9 ft

Job No: 15-53087


Date: 17-Sep-2015 15:59:49

Site: AECI-New Madrid

Sounding: CPT15-HAC3

Cone: AD419

Cone Area: 15 sq cm

on a Donth

Filename: 15-53087_CP03.PPD

U Min: 46.8 ft

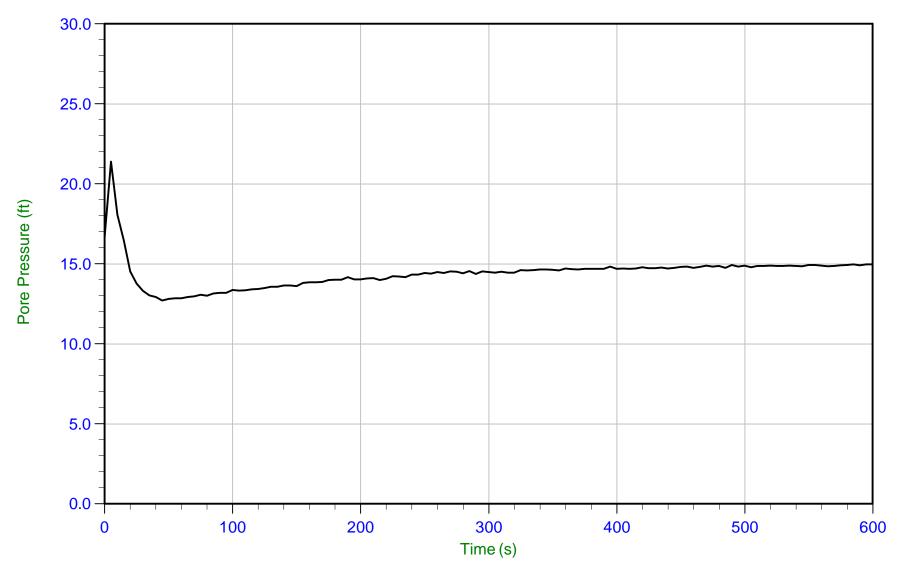
WT: 12.744 m / 41.811 ft

Trace Summary:

Depth: 29.000 m / 95.143 ft Duration: 600.0 s U Max: 54.7 ft

Ueq: 53.3 ft

Job No: 15-53087


Date: 17-Sep-2015 13:17:21

Site: AECI-New Madrid

Sounding: CPT15-HAC4

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

Filename: 15-53087_CP04.PPD Depth: 15.250 m / 50.032 ft

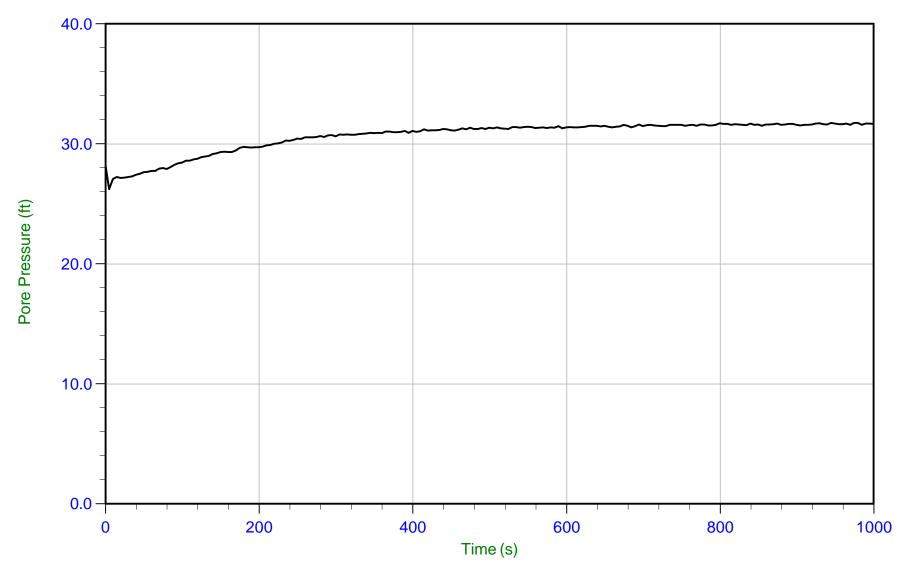
U Min: 12.7 ft

WT: 10.660 m / 34.973 ft

Duration: 600.0 s

U Max: 21.4 ft

Ueq: 15.1 ft


Job No: 15-53087

Date: 15-Sep-2015 17:52:55 Site: AECI-New Madrid

Sounding: CPT15-HAC5

Cone: AD419

Cone Area: 15 sq cm

Filename: 15-53087_CP05.PPD Depth: 22.900 m / 75.130 ft

U Min: 26.2 ft

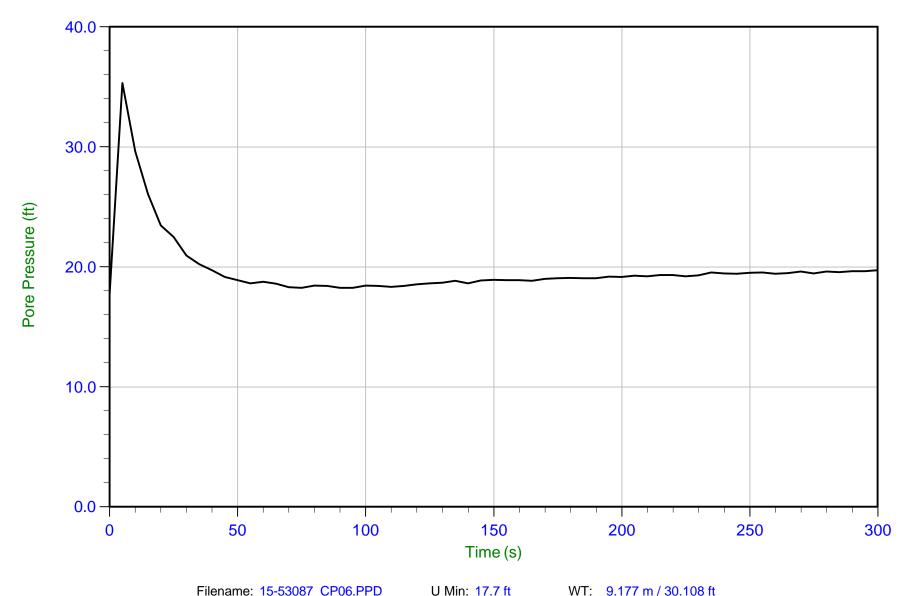
WT: 13.230 m / 43.405 ft

Trace Summary:

Duration: 1000.0 s

U Max: 31.8 ft Ueq: 31.7 ft

Job No: 15-53087


Date: 16-Sep-2015 10:26:29

Site: AECI-New Madrid

Sounding: CPT15-HAC6

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

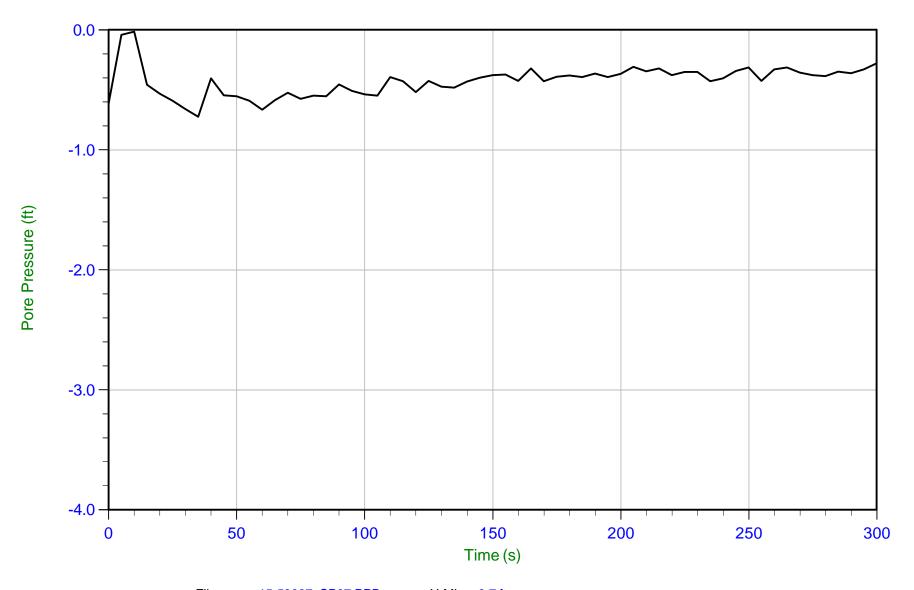
Filename: 15-53087_CP06.PPD Depth: 15.250 m / 50.032 ft

WT: 9.177 m / 30.108 ft

Duration: 300.0 s

U Max: 35.3 ft

Ueq: 19.9 ft


Job No: 15-53087

Date: 15-Sep-2015 14:36:00

Cone: AD419
Cone Area: 15 sq.cm

Sounding: SCPT15-HAC7

Site: AECI-New Madrid Cone Area: 15 sq cm

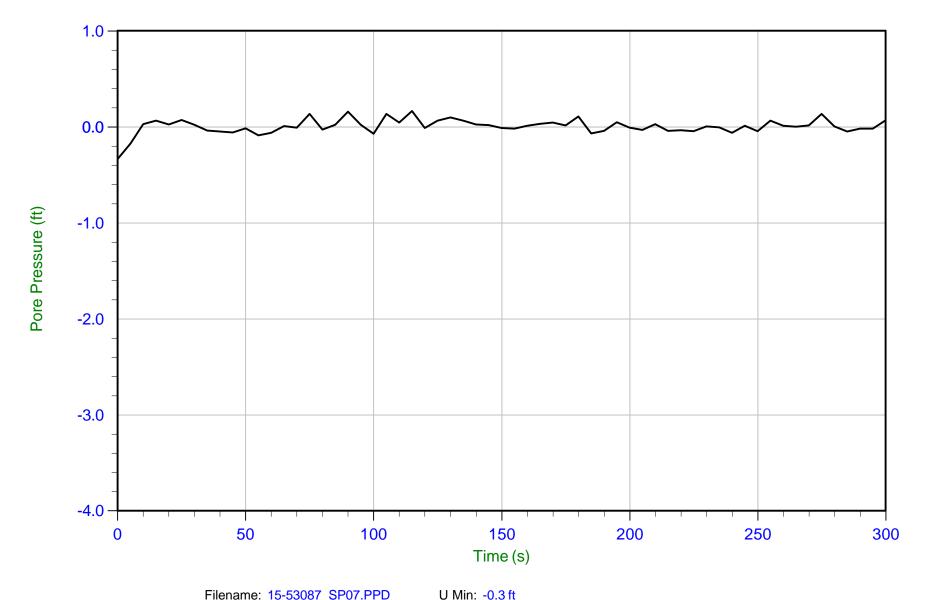
Trace Summary:

Filename: 15-53087_SP07.PPD

Depth: 0.350 m / 1.148 ft

U Min: -0.7 ft U Max: -0.0 ft

Duration: 300.0 s



Job No: 15-53087

Date: 15-Sep-2015 14:36:00

Site: AECI-New Madrid Cone Area: 15 sq cm

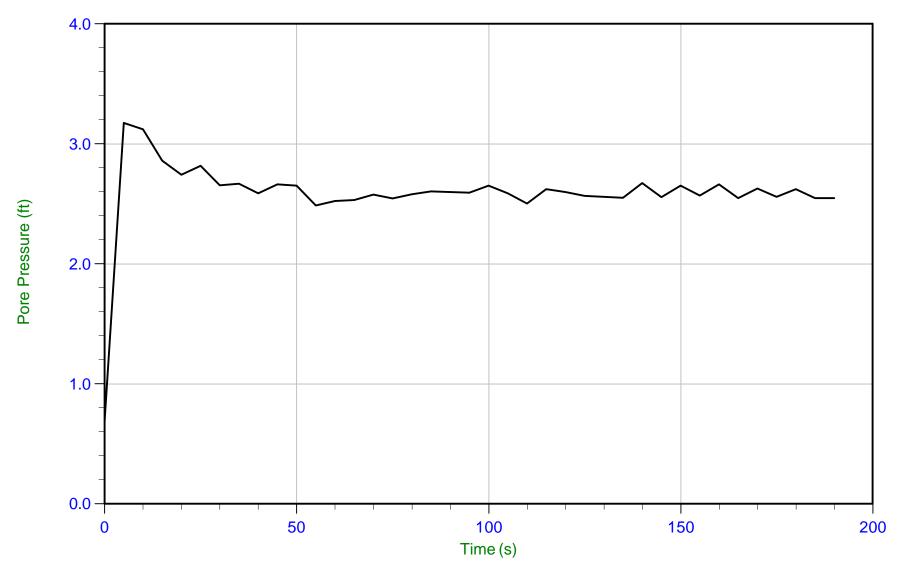
-53087 Sounding: SCPT15-HAC7 ep-2015 14:36:00 Cone: AD419

Trace Summary:

Filename: 15-53087_SP07.PPD Depth: 0.950 m / 3.117 ft

17 ft U Max: 0.2 ft

Duration: 300.0 s



Job No: 15-53087

Date: 15-Sep-2015 14:36:00 Site: AECI-NewMadrid Sounding: SCPT15-HAC7

Cone: AD419

Cone Area: 15 sq cm

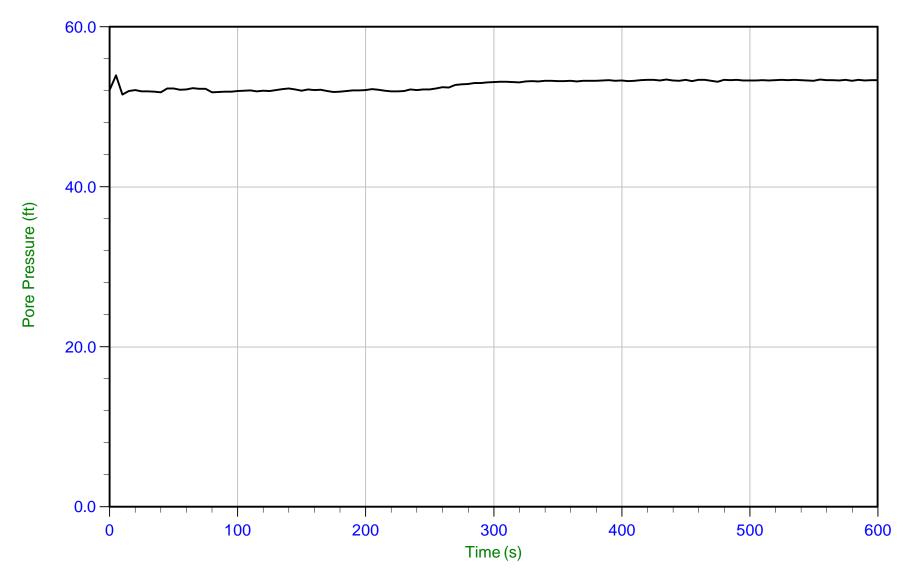
Filename: 15-53087_SP07.PPD Depth: 1.950 m / 6.398 ft U Min: 0.7 ft U Max: 3.2 ft WT: 1.161 m / 3.809 ft

Trace Summary: Depth: 1.950 m / Duration: 190.0 s

U IVIAX. 3.2 IL

Ueq: 2.6 ft

Job No: 15-53087


Date: 15-Sep-2015 14:36:00

Site: AECI-New Madrid

Sounding: SCPT15-HAC7

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

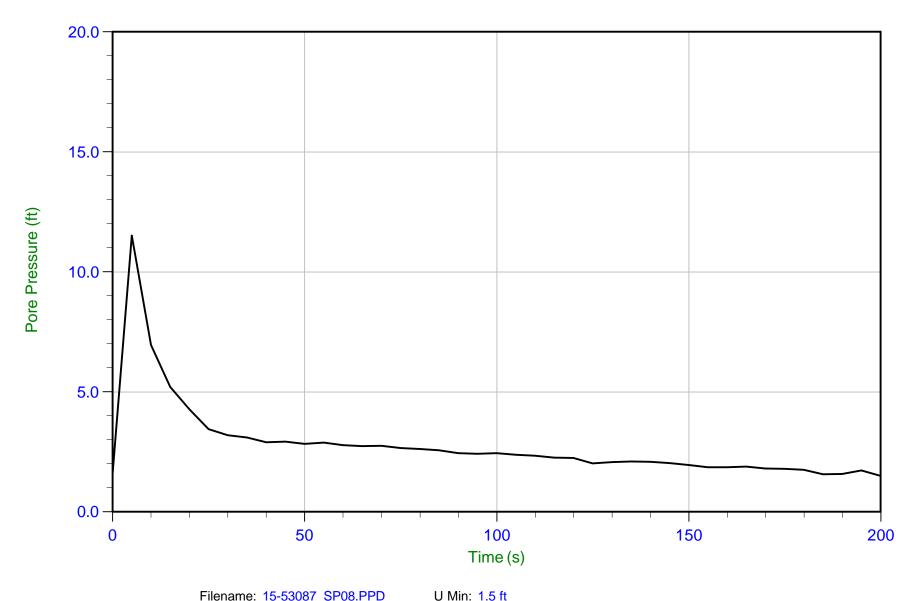
Filename: 15-53087_SP07.PPD Depth: 29.000 m / 95.143 ft U Min: 51.5 ft

WT: 12.744 m / 41.811 ft

Duration: 600.0 s

U Max: 53.9 ft

Ueq: 53.3 ft


Job No: 15-53087

Date: 16-Sep-2015 12:39:09 Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

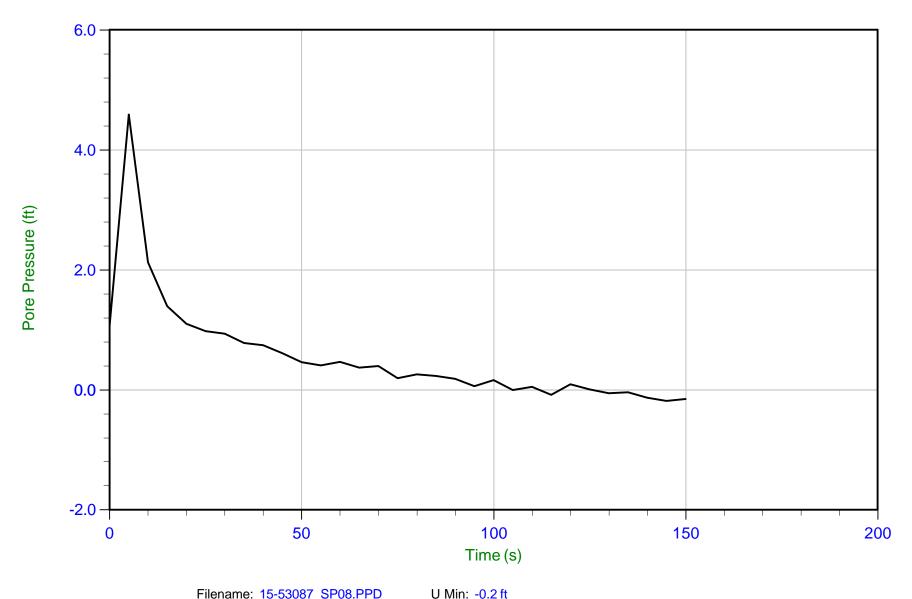
Trace Summary:

Filename: 15-53087_SP08.PPD

Depth: 0.350 m / 1.148 ft

U Max: 11.5 ft

Duration: 200.0 s



Job No: 15-53087

Date: 16-Sep-2015 12:39:09 Site: AECI-New Madrid Cone: AD419

Sounding: SCPT15-HAC8

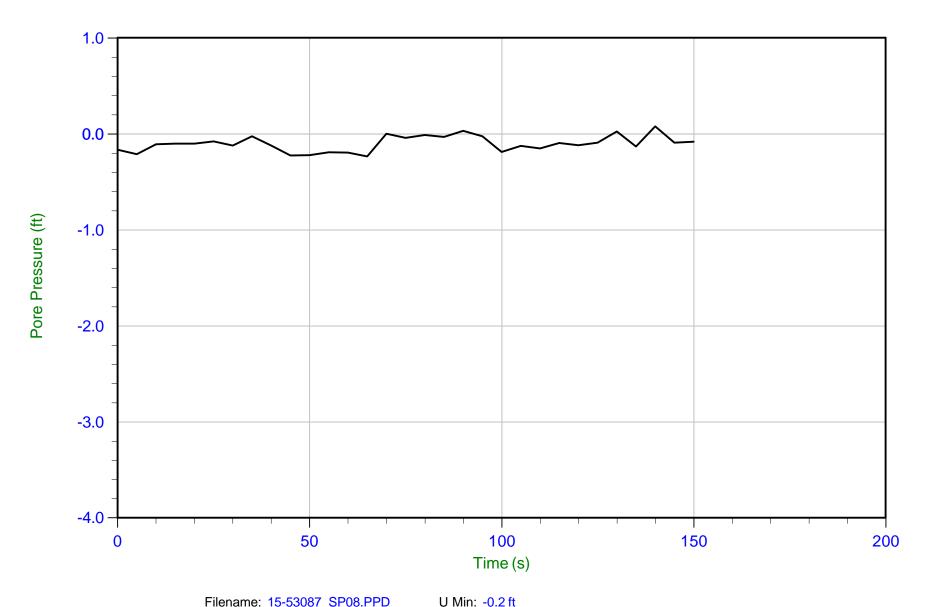
Cone Area: 15 sq cm

Trace Summary:

Filename: 15-53087_SP08.PPD Depth: 0.900 m / 2.953 ft

U Max: 4.6 ft

Duration: 150.0 s


Job No: 15-53087

Date: 16-Sep-2015 12:39:09 Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

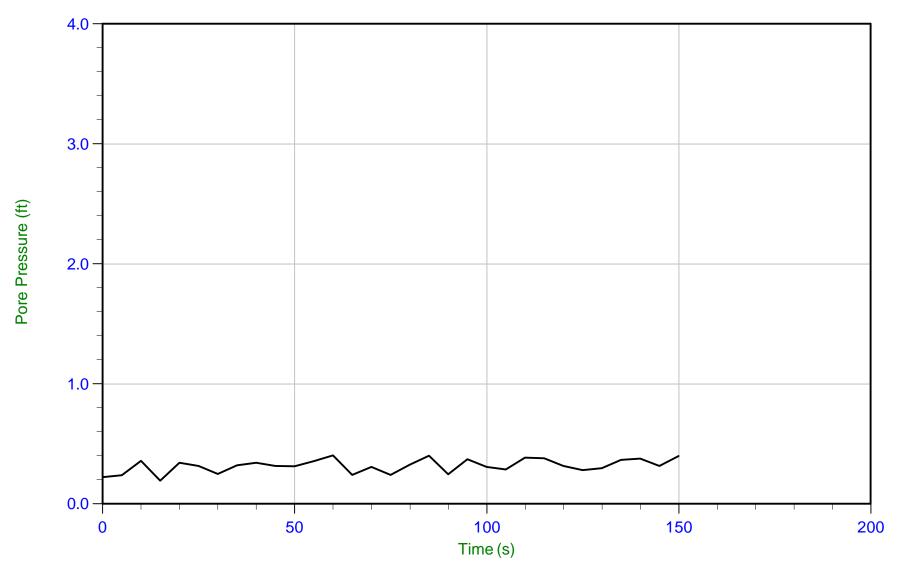
Trace Summary:

Filename: 15-53087_SP08.PPD

Depth: 1.900 m / 6.234 ft

U Max: 0.1 ft

Duration: 150.0 s



Job No: 15-53087

Date: 16-Sep-2015 12:39:09 Site: AECI-New Madrid Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

Filename: 15-53087_SP08.PPD Depth: 2.900 m / 9.514 ft U Min: 0.2 ft

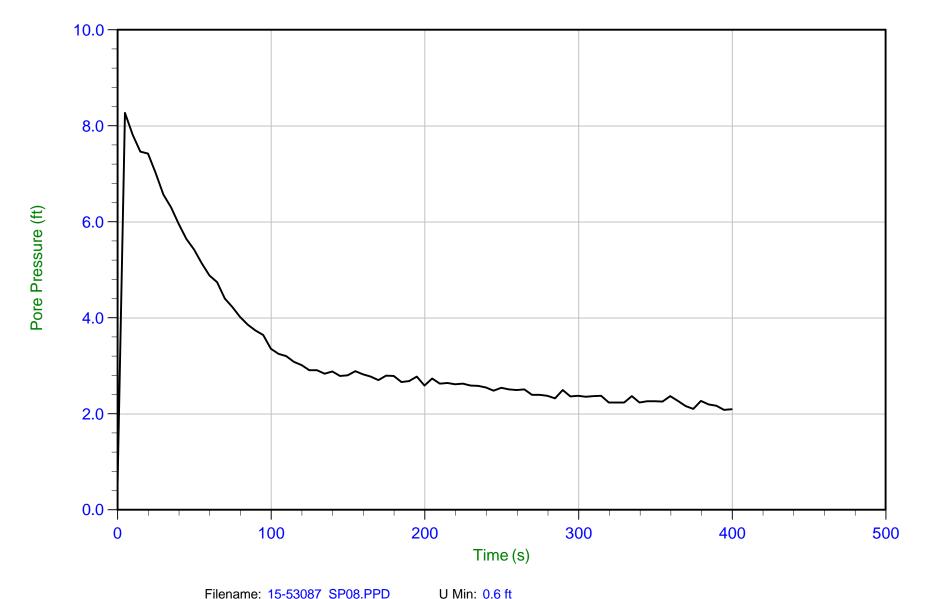
WT: 2.796 m / 9.172 ft

Trace Summary: Depth: 2.900 m / Duration: 150.0 s

U Max: 0.4 ft

Ueq: 0.3 ft

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

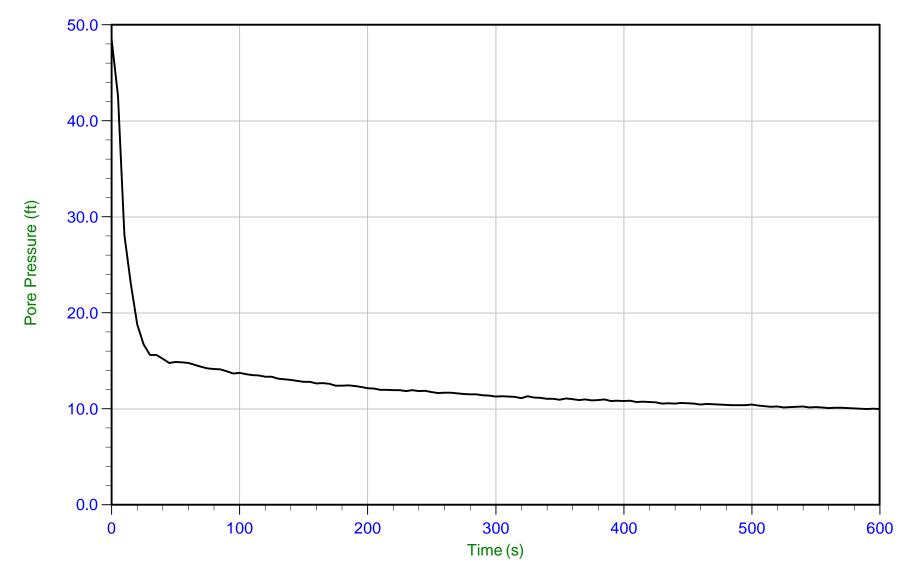
Trace Summary:

Filename: 15-53087_SP08.PPD Depth: 3.900 m / 12.795 ft

U Max: 8.3 ft

Duration: 400.0 s

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

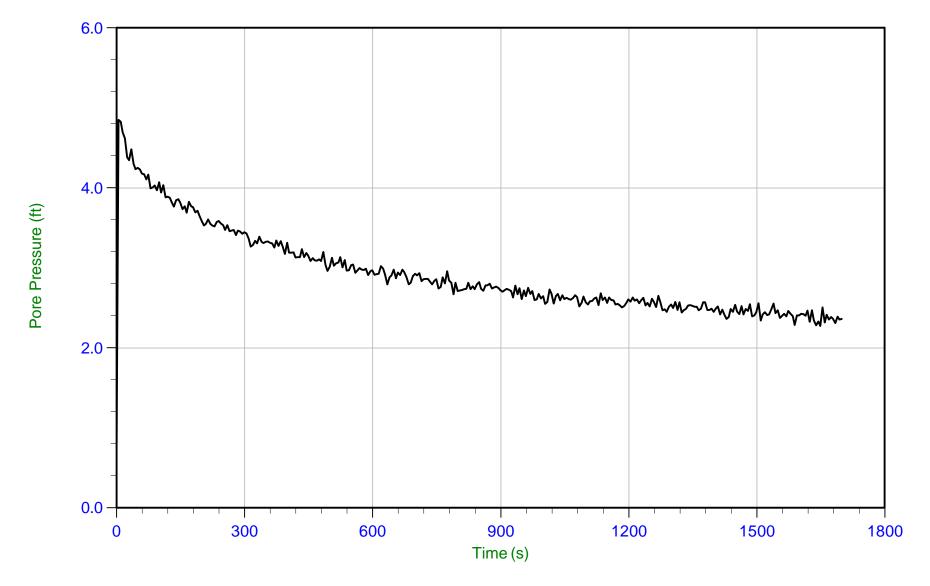
Filename: 15-53087_SP08.PPD

Depth: 4.900 m / 16.076 ft

Duration: 600.0 s

U Min: 10.0 ft U Max: 48.5 ft

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

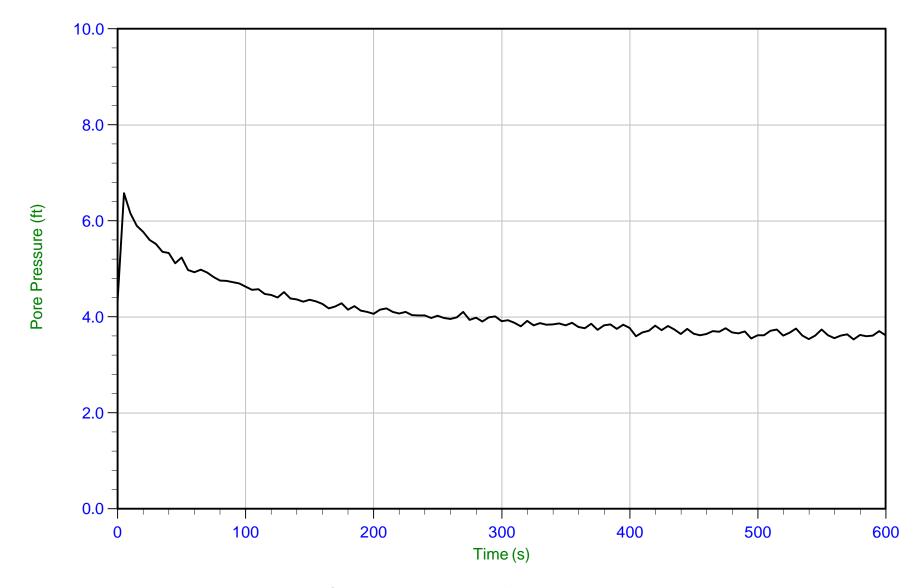
Filename: 15-53087_SP08.PPD

Depth: 5.900 m / 19.357 ft

U Min: 0.8 ft U Max: 4.9 ft

Duration: 1700.0 s

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

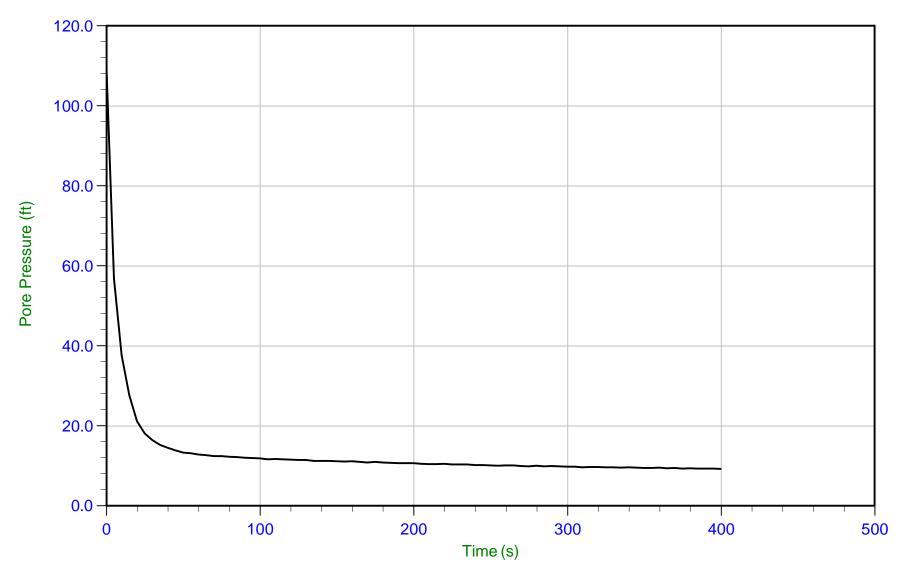
Filename: 15-53087_SP08.PPD

Depth: 6.900 m / 22.638 ft

Duration: 600.0 s

U Min: 3.5 ft

U Max: 6.6 ft



Job No: 15-53087

Date: 16-Sep-2015 12:39:09 Site: AECI-New Madrid Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

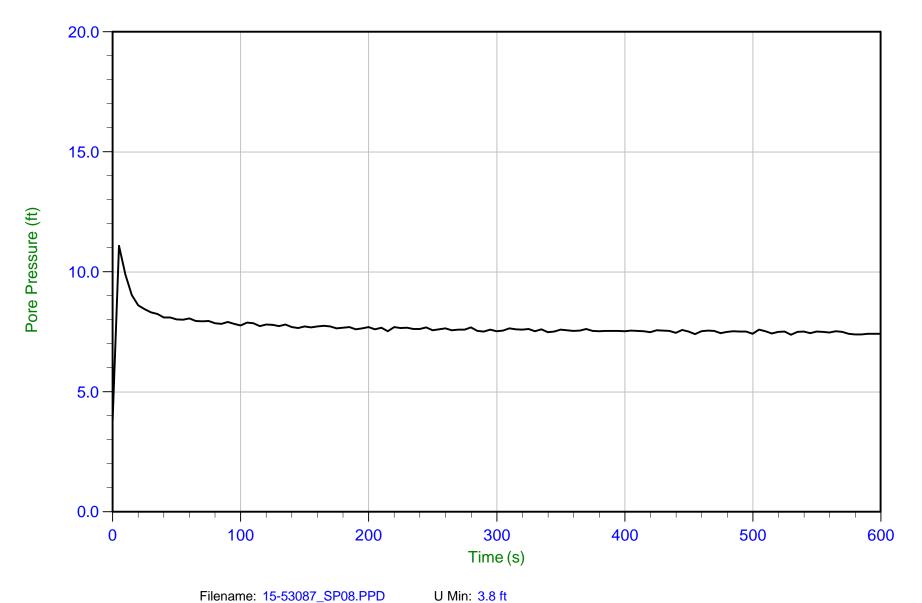
Filename: 15-53087_SP08.PPD

Duration: 400.0 s

Depth: 7.900 m / 25.918 ft

U Min: 9.2 ft

U Max: 108.8 ft


Job No: 15-53087

Date: 16-Sep-2015 12:39:09 Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

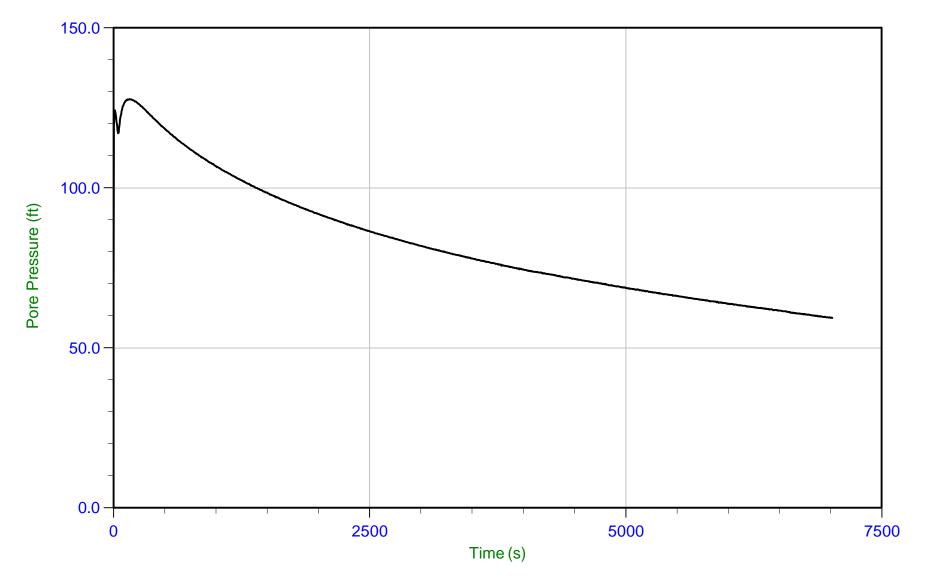
Trace Summary:

Depth: 8.900 m / 29.199 ft

U Max: 11.1 ft

Duration: 600.0 s

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

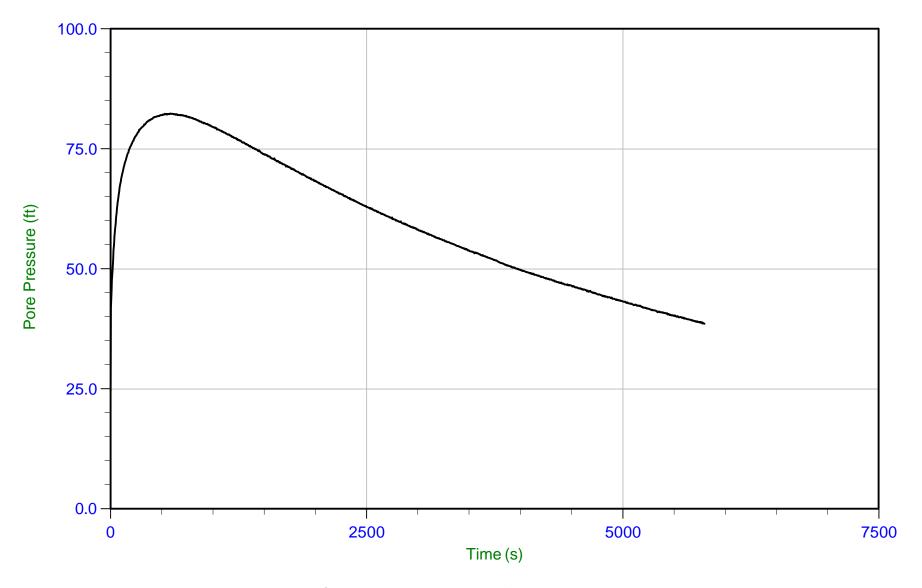
Filename: 15-53087_SP08.PPD

Depth: 9.900 m / 32.480 ft

Duration: 7020.0 s

U Min: 59.3 ft U Max: 127.7 ft

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

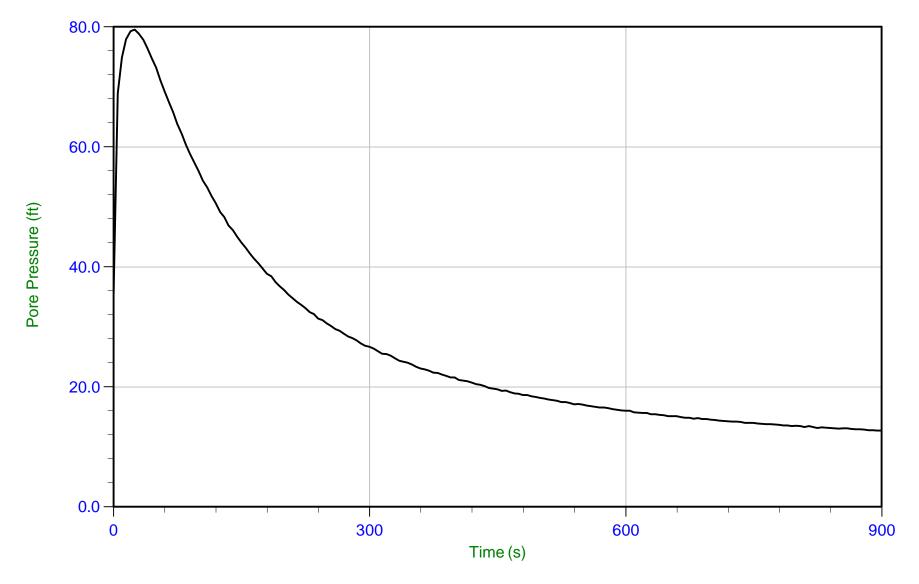
Filename: 15-53087_SP08.PPD

Duration: 5800.0 s

Depth: 10.900 m / 35.761 ft

U Min: 24.3 ft U Max: 82.4 ft

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

Trace Summary:

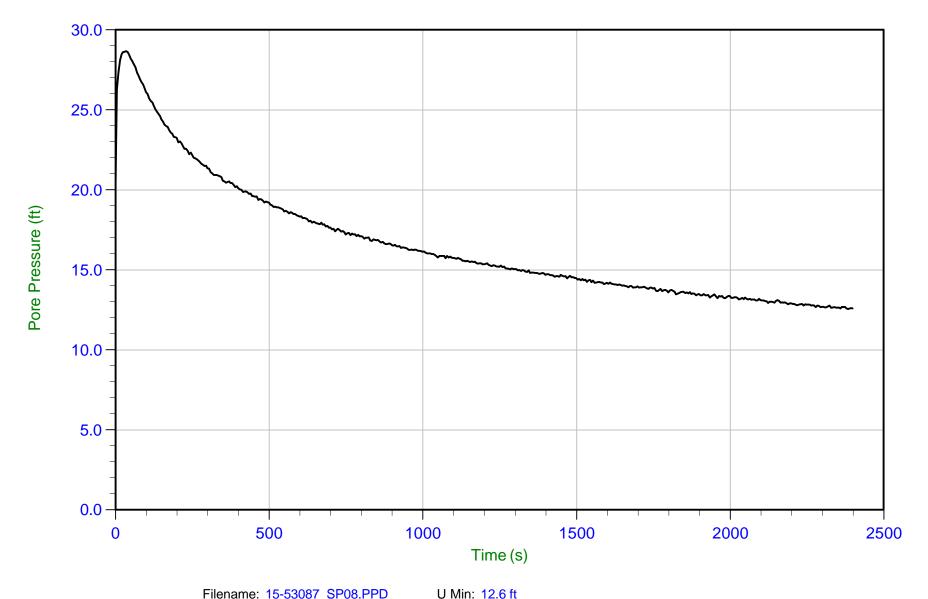
Filename: 15-53087_SP08.PPD

Depth: 11.900 m / 39.042 ft

U Min: 12.7 ft U Max: 79.6 ft

Duration: 900.0 s

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

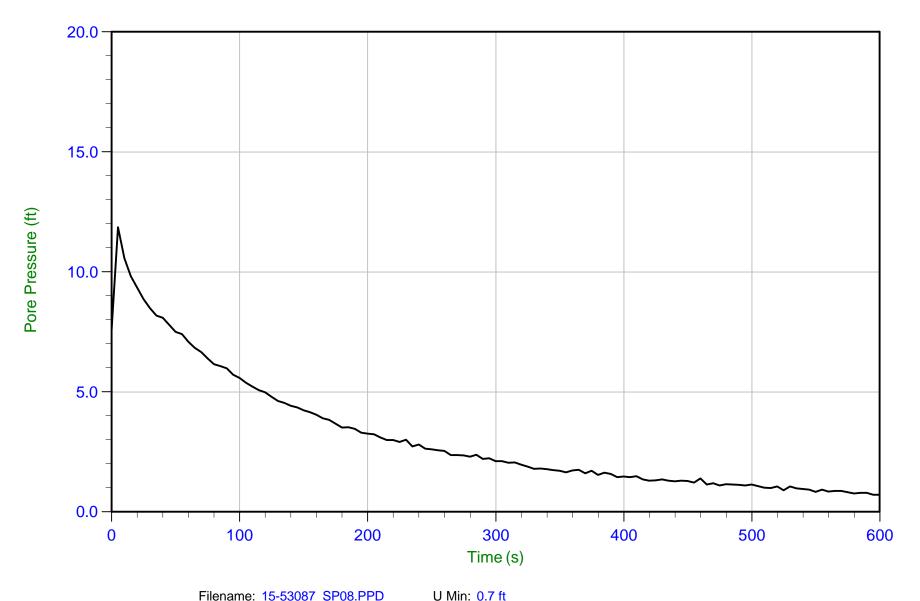
Trace Summary:

Filename: 15-53087_SP08.PPD Depth: 12.900 m / 42.322 ft

U Max: 28.7 ft

Duration: 2400.0 s

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

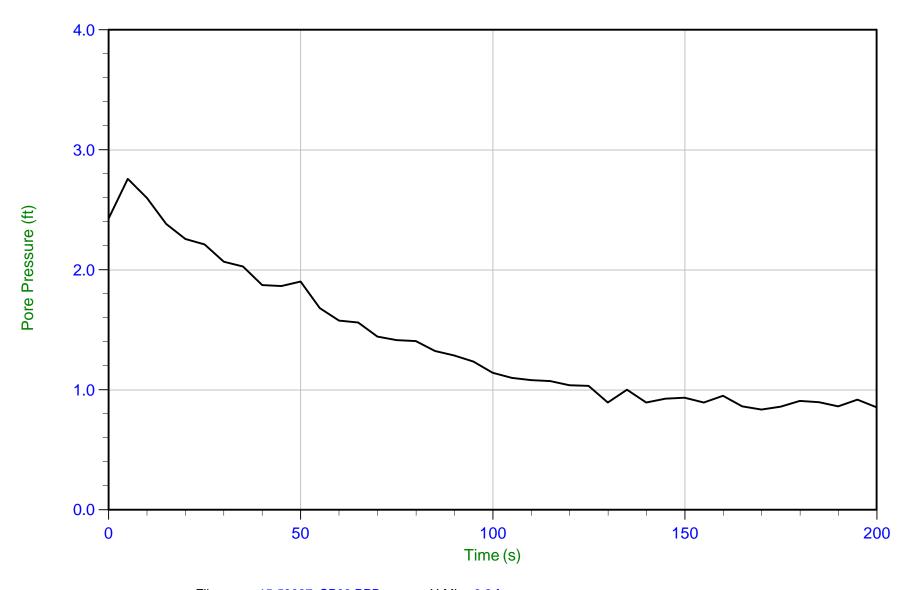
Trace Summary:

Filename: 15-53087_SP08.PPD

Depth: 13.900 m / 45.603 ft

U Max: 11.9 ft

Duration: 600.0 s



Job No: 15-53087

Date: 16-Sep-2015 12:39:09 Site: AECI-New Madrid Sounding: SCPT15-HAC8

Cone: AD419

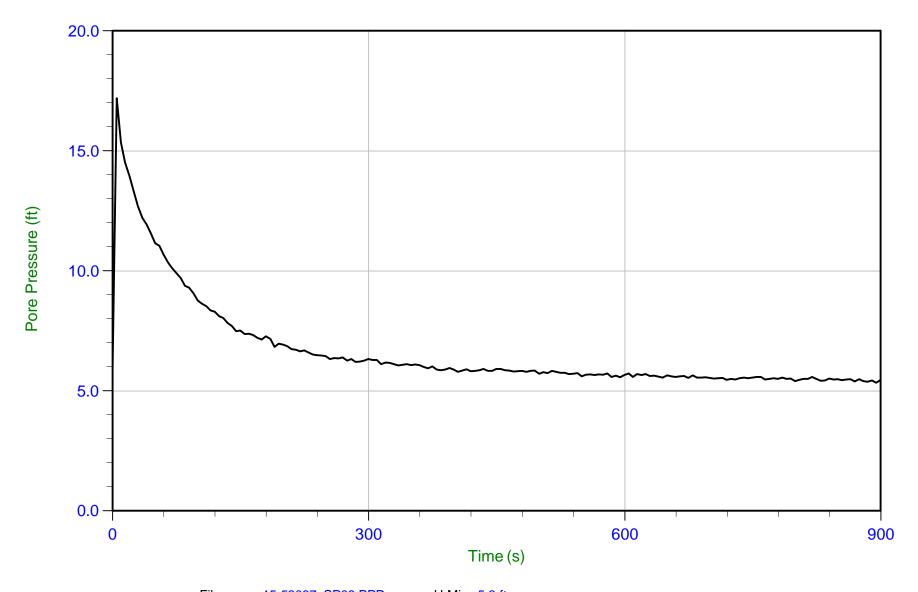
Cone Area: 15 sq cm

Trace Summary:

Filename: 15-53087_SP08.PPD Depth: 14.900 m / 48.884 ft U Min: 0.8 ft U Max: 2.8 ft

Duration: 200.0 s

Job No: 15-53087


Date: 16-Sep-2015 12:39:09

Site: AECI-New Madrid

Sounding: SCPT15-HAC8

Cone: AD419

Cone Area: 15 sq cm

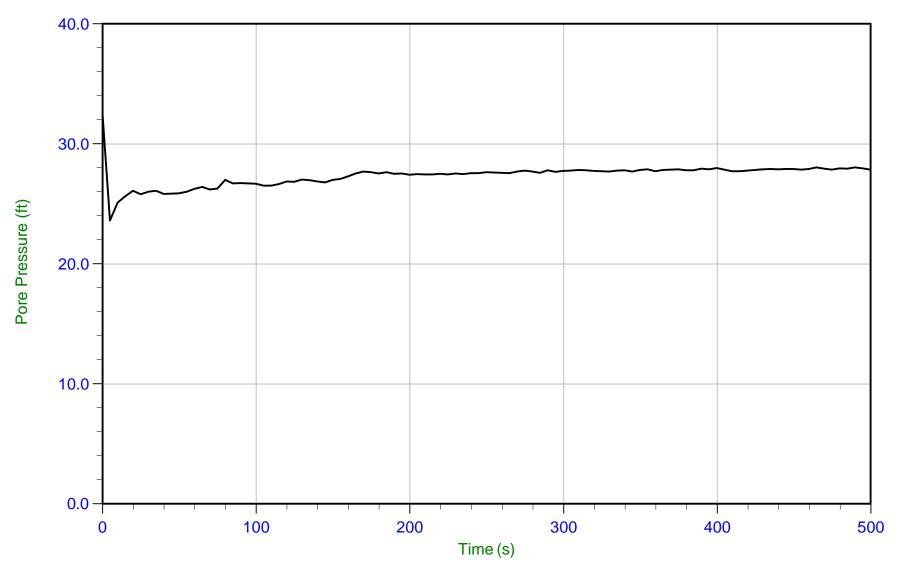
Trace Summary:

Filename: 15-53087_SP08.PPD

Depth: 15.250 m / 50.032 ft

U Min: 5.3 ft U Max: 17.2 ft

Duration: 900.0 s


Job No: 15-53087

Date: 17-Sep-2015 11:57:35

Cone: AD419
Cone Area: 15 sq.cm

Sounding: CPT15-HAC9

Site: AECI-New Madrid Cone Area: 15 sq cm

Filename: 15-53087_CP09.PPD Depth: 22.900 m / 75.130 ft U Min: 23.6 ft

WT: 14.398 m / 47.237 ft

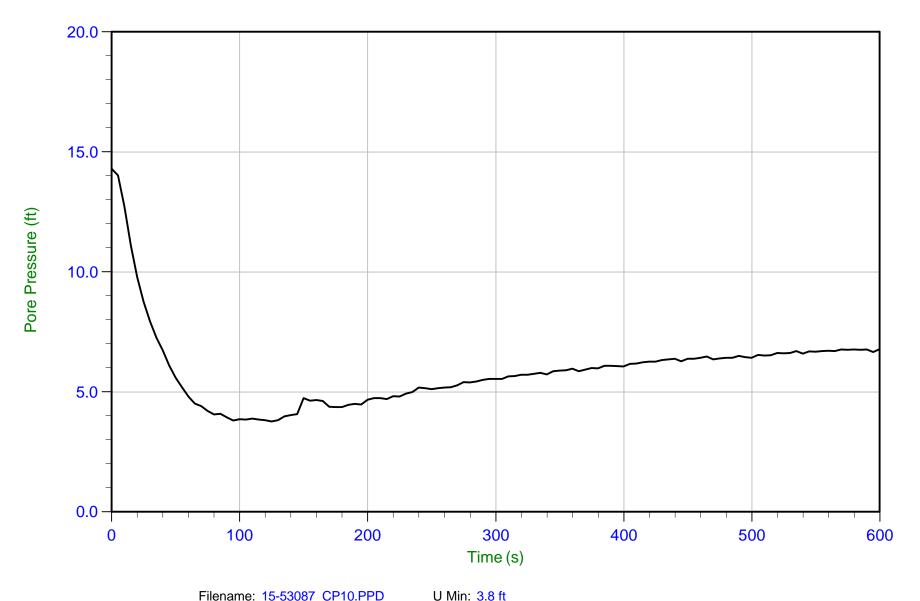
Duration: 500.0 s

Trace Summary:

U Max: 32.4 ft

Ueq: 27.9 ft

Job No: 15-53087


Date: 17-Sep-2015 17:40:44

Site: AECI-New Madrid

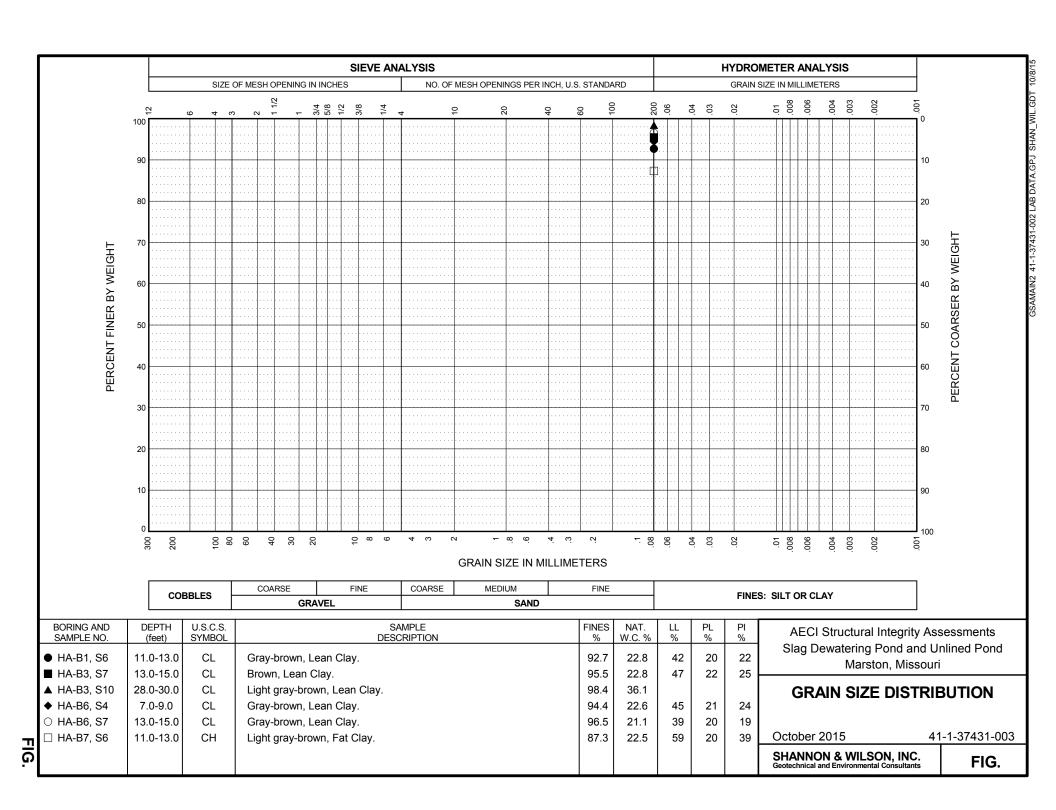
Sounding: CPT15-HAC10

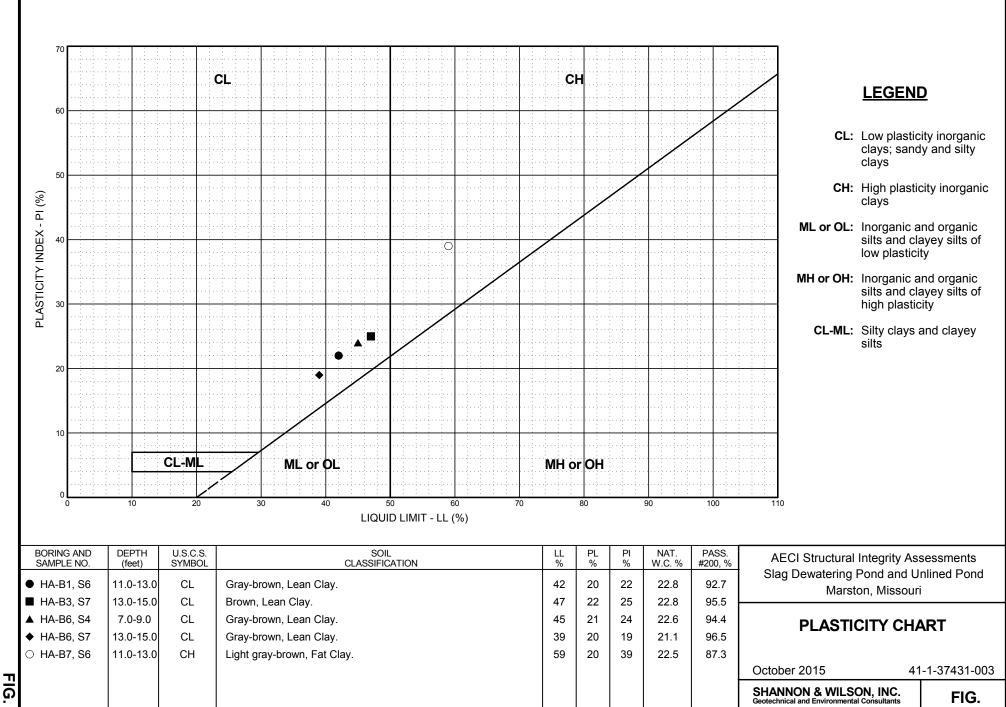
Cone: AD419

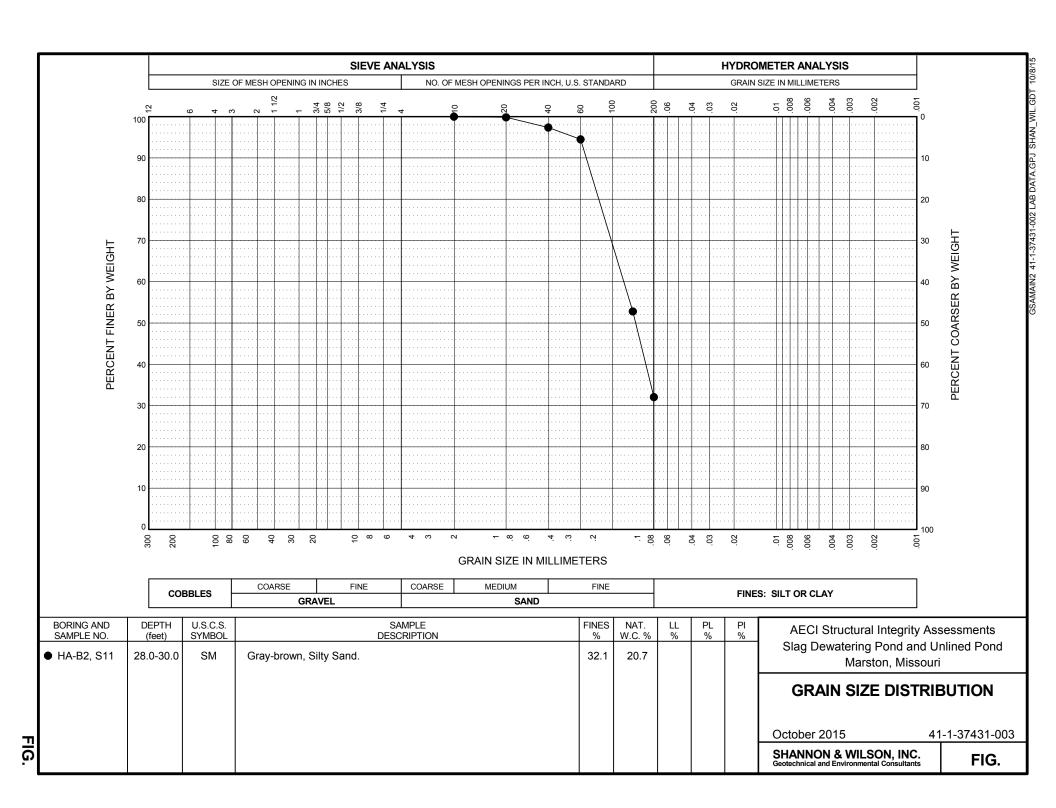
Cone Area: 15 sq cm

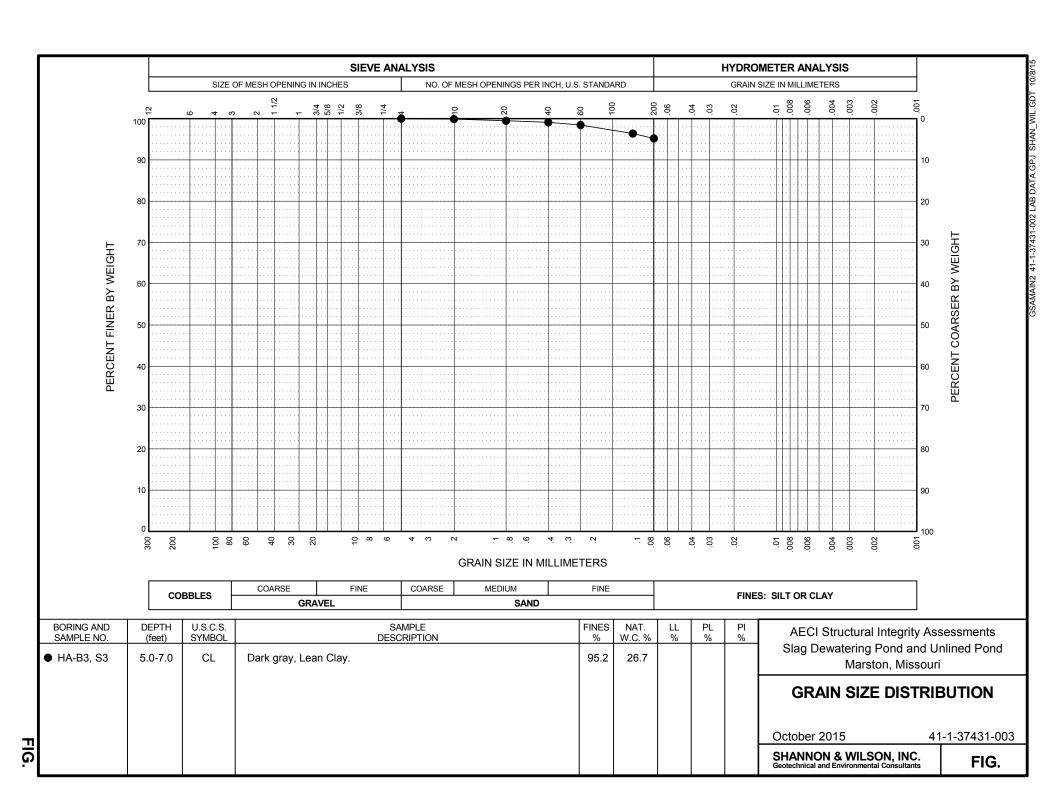
Trace Summary:

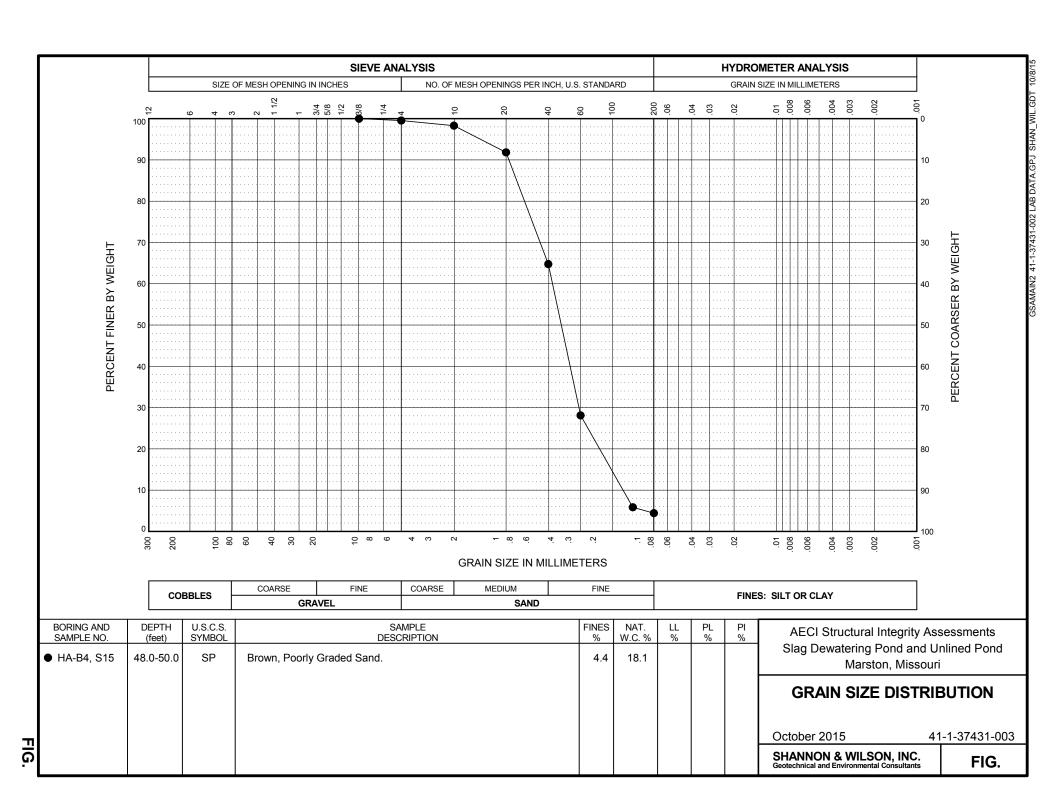
Filename: 15-53087_CP10.PPD

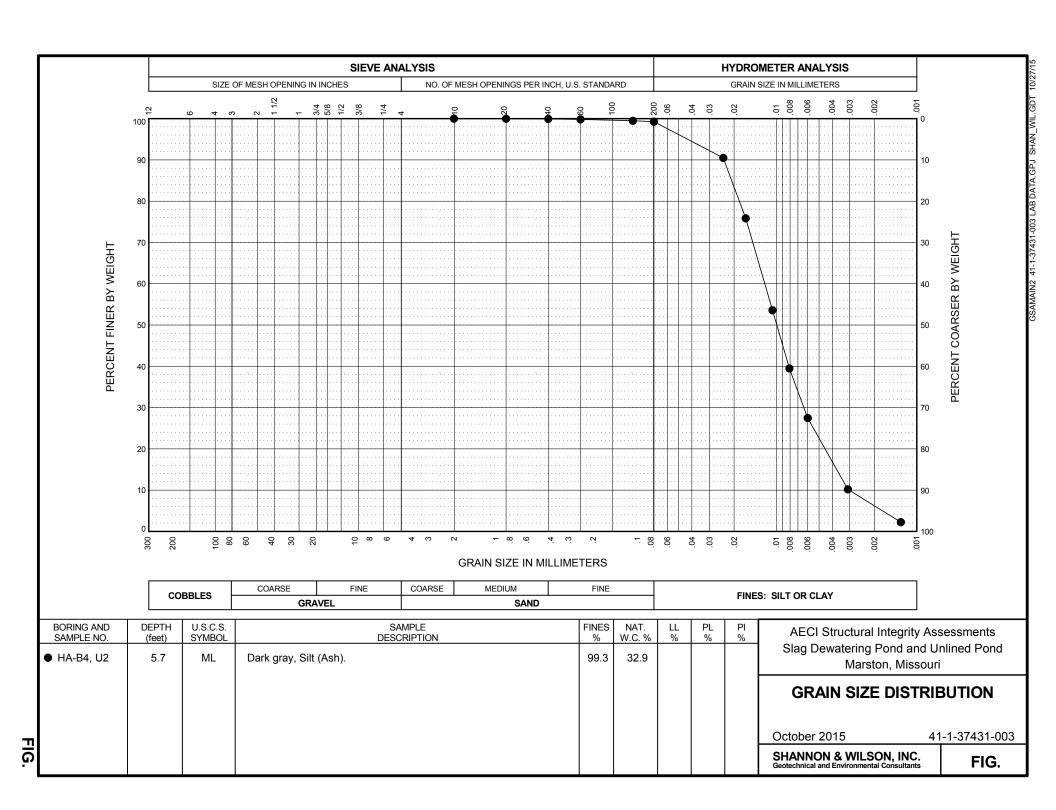

Depth: 15.400 m / 50.524 ft

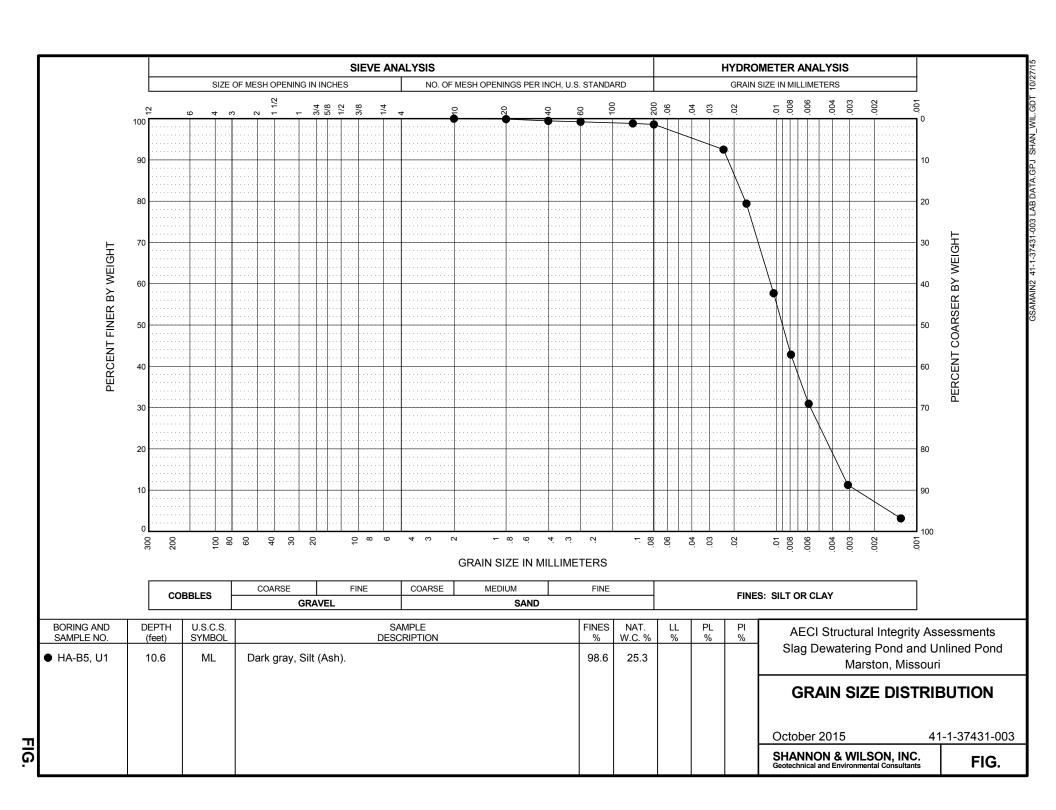

U Max: 14.3 ft


Duration: 600.0 s


APPENDIX C


Laboratory Test Results





PROJEC1	Γ <u>AECI Structura</u>	al Integrity Ass	essment	DATE	10/12/15	BORING NO.	HA-B4
JOB NO.	41-1-37431-00	03		SHEET NO.	1	TESTED BY	СМВ
	IAME Haley					CHECKED B	
CLIENTIN	IAIVIE <u>Haley (</u>	x Alunch				CHECKED B	
CLASSIF	ICATION OF U	NDISTURBED	SAMPLE				
	SAMPI	LE NO	U2		DEPTH (ft)	5.0-7.0	
	Sampli	ng Method _	Push				
	Туре о	f Sample	Shelby Tub	oe .		Inch	3"
						Bra	ass o Steel
	DEPTH	NAT. V		TYPE OF		CLASSIFIC	ATION
_	FT.	Strength info.	W.C.	TEST			
_							ICH RECOVERY Fair Poor Disturbed
5.0)	PP=N/A	HAT-3	MC N	Dark gray	Silt (ML) (ASH	
<u> </u>		1 -14/74	TIATO			90% low dry str	
_		_			_dilatancy,	low plasticity.	
_	-	-		SAVED	_		
5.5	-	_			_		
_	_	_			1		
_	-	-		Consol/Hydro	}		
_		_			Ė		
6.0		_					
		_		-			
	_	_			_		
_	-	_		SAVED	_		
_]]	- -					
6.5	5			-	6.6		
_	-	_			6.6 Dark gray,	Silty Sand (SM) (Slag); moist;
_]]	_			20% low to	no plasiticity fi	nes; 80% fine
_	4 -	_			to coarse g	ırained, subang	jular, sand.
7.0		PP=N/A	HAT-4	MC (!		
	_				<u>'</u>		
Durandana	4 OTM D 0 400				Can/Tare No.		HAT-4
Procedure: NOTE:	ASTM D 2488 Soil description is ba	sed on visual-manua	al procedure. Th	is description is not	WET + TARE DRY + TARE	<u> </u>	73.65 56.61
	meant for engineerin		•		TARE	2.54	2.57
	All cample percenter	res for cobbles and b	oulders are by	olume	% WATER	28.8	31.5
	All sample percentag	yes for coddies and b	ouluers are by V	oiullie.			
	REMARKS:						

PROJECT	AECI Structura	al Integrity Ass	essment	DAT	E		10/14/15	BORING NO	O	HA-B5
JOB NO	41-1-37431-00	03		SHF	FT NO		1	TESTED BY	,	СМВ
				•			<u> </u>			<u> </u>
CLIENT N	AME Haley	& Aldrich						CHECKED	ВҮ	
CLASSIFI	CATION OF U	NDISTURBED	SAMPLE							
	SAMP	LE NO	U1				DEPTH (ft)	10.0-12.0		
	Sampli	ing Method _	Push							
	Type o	of Sample	Shelby Tub	e				Inch	3"	
	,,		•						Brass or Stee	
	DEPTH	NAT. V	V C	-	TYPE OF					
	FT.	Strength info.	W.C.		TEST			CLASSIFI	CATION	
		J						24	INCH REC	OVERY
40-0								Sample: Good		
10.0		PP=N/A	HAT-5		MC	NN	Dark gray	Silt (ML) (AS		
	-	1 -11/7	TIAT-3			Ш		90% low dry s		
<u> </u>		_		Ш,		Щ	II—	ow plasticity.	•	'
_					SAVED					
40.5	_	_				TIII	_			
10.5						<u> </u>				
	-	_		<u> </u>	onsol/Hydr		<u>`</u> -			
] _	_			SAVED	Ш	Ĺ			
	_	_		ЩЬ		Щ	<u> </u>	low 10.8 feet	-	•
11.0	_	-				-	past extrud	er head durir	ng pushing	
11.0										
_] _	_				_				
	_	_				_	_			
_	-	_				_	-			
11.5	-	_				-	_			
	_	_				_				
	_	_				_	<u> </u>			
	-	_				_	_			
_	-	_				-	L Moisture sa	ample obtaine	ed from sa	mple
12.0	_	PP=N/A	HAT-6		МС	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	lining tube.			
										Ī
	10TM B 0400						Can/Tare No.	HAT-5	HAT-6	
Procedure: NOTE:	ASTM D 2488	ased on visual-manua	al procedure. Th	is descr	intion is not		WET + TARE DRY + TARE	45.03 35.54	35.53 24.87	
.,	-	ng purposes requiring	•		-		TARE	2.56	2.54	
	.						% WATER	28.8	47.7	
	All sample percentage	ges for cobbles and b	oulders are by v	olume.						
	REMARKS:									
	NEWANNO.									

PROJECT	AECI Structur	al Integrity Ass	essment	DATE	10/9/15	BORING NO.	HA-B5
JOB NO.	41-1-37431-0	03		SHEET NO.	1	TESTED BY	CMB
	AME Haley					CHECKED BY	
02.2	- IIII - IIII - IIII - III	<u>a 7 iiarrorr</u>				0112011222	
CLASSIFI	CATION OF U	<u>NDISTURBED</u>	SAMPLE				
	SAMP	LE NO	U2		DEPTH (ft)	20.0-22.0	
	Sampl	ing Method _	Push				
	Туре с	of Sample	Shelby Tub	e		Inch	3"
						Bras	ss o Steel
	DEPTH FT.	NAT. V Strength info.	V.C. W.C.	TYPE OF TEST		CLASSIFICA	TION
<u> </u>		ou ongur mior	11.0.			24 IN	CH RECOVERY
20.0						_	air Poor Disturbed
	_	PP=N/A	HAT-1			Silt (ML) (ASH)	
	-	_		SAVED	_	id layers (slag), subangualr san	moist; 20% fine d: 80% low dry
	_	_			_	apid dilatancy, k	•
20.5	-	_			· 		
	_	_		υυ			
	_	_			_		
_		_			-		
21.0	-	_			_		
	_			SAVED	_		
	_	_			_		
_	_						
21.5	_	_		Consol	-		
	_	_					
_	_	_		SAVED	_		
_	_	-					
22.0	-	PP=N/A	HAT-2	MC (33			
		<u> </u>		<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>		
Procedure:	ASTM D 2488				Can/Tare No. WET + TARE		IAT-2 76.46
NOTE:	Soil description is ba	ased on visual-manua	al procedure. Th	is description is not	DRY + TARE	48.31	58.13
	meant for engineering	ng purposes requiring	precise classific	cation of soils.	TARE % WATER	i	2.54 33.0
	All sample percenta	ges for cobbles and b	ooulders are by v	olume.			
	REMARKS:						

TUBE DENSITY ASTM D2937

Project	AECI Structural Integrity Assessment	Client Haley & A	ldrich	
Location	Marston, Missouri	Tested By / Date	CMB	10/9-14/15
Job No.	41-1-37431-003	Calculated By / Date	CMB	10/16/15
File	41-1-37431-003 D2937	Checked By / Date	CMB	10/16/15

Sample Boring	HA-B4	HA-B5	HA-B5	
Sample Number	U2	U1	U2	
Sample Depth	5.0 - 7.0	10.0 - 12.0	20.0 - 22.0	
Height (in)	22.620	23.790	23.845	
Diameter (in)	2.881	2.862	2.884	
Weight (gms)	4030.5	3983	4280.00	
Tare ID				
Tare weight (gms)				
Wet Weight (gms)				
Dry Weight (gms)				
Moisture %	30.2	38.3	34.6	
Area (in ²)	6.52	6.43	6.53	0.00
Volume (in)	147.46	153.05	155.77	0.00
Volume (ft)	0.09	0.09	0.09	0.00
Volume (cm)	2416.41	2507.99	2552.58	0.00
Wet Density (pcf)	104.1	99.1	104.7	#DIV/0!
Dry Density (pcf)	80.0	71.7	77.8	#DIV/0!

Form Date: Pre-2001

Revision Date: 03/11/14

Project	AECI Structura	I Integrity Assess	ment	Client		Haley & Aldrid	ch, Inc.
Location	Marston, Misso	ouri		Tested By / D	ate	CMB	10/21/15
Job Number	41-1-37431-00		tenti overne e di Si	Calculated By		CMB	10/30/15
Boring	НА-В4			Checked By /		TTB	11/2/15
Sample	U2		DESTRUCTION OF THE PARTY OF THE	File		41-1-37431-003	HA-B4 U2 D243
Depth (ft)	5.7			Procedure		ASTM D2435	
Dopin (it)		l Data	Final Data				
		Ring Diameter	Sample Height		Trimmi	ings #1	
Measured Reading 1	1.004	2.503	0.850	inches	Tare No.	C-1	1
Measured Reading 2		2.502	0.850	inches	Tare Weight	2.51	1
Measured Reading 3		2.505	0.849	inches	Wet Weight	50.82	1
Measured Reading 4		2.503	0.849	inches	Dry Weight	38.60	1
	1.004	2.503	0.850	inches	M.C. %	33.9%	1
Average Reading		Wet+Ring+Tare	358.83			ings #2	1
Wet Weight + Ring	288.07		330.88	grams	Tare No.	C-2	1
Weight of Ring	144.11	Dry+Ring+Tare		grams		2.56	-
Specific Gravity	2.66	Tare Weight	82.92	grams cm³	Tare Weight		1
Sample Volume	80.97		66.97	10-4 cm 14/10-	Wet Weight	43.76	1
Height of Solids	0.484		0.484	inches	Dry Weight	33.77	1
Void Ratio	1.08		0.72		M.C. %	32.0%	1
Saturation	95.6		100.0	percent	Ring Number	410	
Weight of Water	40.11		27.95	grams	Inundated @	0.27	
Moisture Content	38.6		26.9	percent	Trimming Met	hod	Cutting Sho
Wet Unit Weight	111.0		122.9	pcf	[Cutting Shoe		one (Ring)]
Dry Unit Weight	80.1		96.8	pcf	Method Used		101-10-
Notes: The specific g	ravity is comput				Computed Ht.		inches
Load '	1		ad 2		ad 3	Loa	
Air Press.	1.6	Air Press.	2.4	Air Press.	3.9	Air Press.	7.1
Load, tsf	0.25	Load, tsf	0.5	Load, tsf	1.0	Load, tsf	2.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	77	0.1	120	0.1	183	0.1	
0.25	79	0.25	123	0.25	191	0.25	421
0.5	80	0.5	124	0.5	198	0.5	443
1	81	1	126	1	201	1	459
2	82	2	128	2	204	2	471
4	83	4	130	4	209	4	480
8	85	8	131	8	212	8	488
17	87	15	133	15		15	495
30	88	30	135	30	220	30	501
60		60		60		60	506
120		120	/	120		120	
240	X	240	X	240		240	517
480		480		480		370	520
1440		1440		1440		1305	528
Load 5	5	4	ad 6		ad 7	Loa	
Air Press.	3.9	Air Press.	2.4	Air Press.	3.9	Air Press.	7.1
	1.0	Load, tsf	0.5	Load, tsf	1.0	Load, tsf	2.0
Load, tsf	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
Time, min. 0.1	518	0.1	507	0.1	510	0.1	525
0.1	517	0.1	507	0.25	510	0.25	526
0.25	517	0.25	507	0.25	510	0.25	526
			506	0.5	510	0.5	526
1	517	1	506		510	2	527
2	517	2	505	2	510	4	527
4	516	8	505	8	510	8	528
8	516			15		15	528
15	516	15	504		511		528
30	/	30	/	30	/	30	529
60	/	. 60		60		60	/
120	X	120	X	120	X	120	/
240		240		240		240	
480	/	480	/	480		480	/
1440	/	1440		1440		1440	/

Project	AECI Structural	I Integrity Assess	ment	Client		Haley & Aldrid	
Location	Marston, Misso			Tested By / D	ate	CMB	10/21/15
Job Number	41-1-37431-003			Calculated By	/ Date	CMB	10/30/15
Boring	HA-B4		AL DESCRIPTION	Checked By /	Date	21B	11/2/15
Sample	U2			File		41-1-37431-003 H	HA-B4 U2 D243
Depth (ft)	5.7			Procedure		ASTM D2435	4/
		l Data	Final Data				
	Sample Height	Ring Diameter	Sample Height		Trimmi	ings #1	
Measured Reading 1	1.004	2.503	0.850	inches	Tare No.	C-1]
Measured Reading 2		2.502	0.850	inches	Tare Weight	2.51]
Measured Reading 3		2.505	0.849	inches	Wet Weight	50.82	
Measured Reading 4		2.503	0.849	inches	Dry Weight	38.60	1
Average Reading	1.004	2.503	0.850	inches	M.C. %	33.9%	1
Wet Weight + Ring	288.07	Wet+Ring+Tare	358.83	grams		ngs #2]
Weight of Ring	144.11	Dry+Ring+Tare	330.88	grams	Tare No.	C-2	1
Specific Gravity	2.66	Tare Weight	82.92	grams	Tare Weight	2.56	1
Sample Volume	80.97		66.97	cm ³	Wet Weight	43.76	1
Height of Solids	0.484		0.484	inches	Dry Weight	33.77	1
Void Ratio	1.08		0.72		M.C. %	32.0%	1
Saturation	95.6		100.0	percent	Ring Number	410	1
Weight of Water	40.11		27.95	grams	Inundated @	0.27	tsf
Moisture Content	38.6		26.9	percent	Trimming Met	hod	Cutting Sho
Wet Unit Weight	111.0		122.9	pcf	[Cutting Shoe	/ Turntable / N	one (Ring)]
Dry Unit Weight	80.1		96.8	pcf	Method Used		
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.		inches
Load			nd 10	Load 11		Load 12	
Air Press.	13.3	Air Press.	25.9	Air Press.	50.8	Air Press.	101.3
Load, tsf	4.0	Load, tsf	8.0	Load, tsf	16.0	Load, tsf	32.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	707	0.1	1104	0.1		0.1	1812
0.25		0.25	1147	0.25		0.25	1830
0.5		0.5	1167	0.5	1518	0.5	
1		1	1180	1	1530	1	
2		2	1193	2		2	1859
4		4	1203	4	1548	4	The second secon
8		8	1211	8		8	
15		15	1219	15		15	
30		30	1226	30		30	1886
60	858	60	1232	60		60	1891
120	863	120	1238	120		120	
240		240	1243	240	1586	240	1902
410	871	480	1248	480		480	
4245		1440	1255	1440		1440	1 10/10/2007

Project	AECI Structural	Integrity Assess	ment	Client		Haley & Aldrich, Inc.	
Location	Marston, Misso			Tested By	Date	CMB	10/21/15
Job Number	41-1-37431-003			Calculated By / Date		CMB	10/30/15
Boring	НА-В4			Checked By / Date		JIB	11/2/15
Sample	U2		EU 241 ES	File		41-1-37431-003 F	IA-B4 U2 D2435
Depth (ft)	5.7			Procedure		ASTM D2435	
		l Data	Final Data				
	Sample Height	Ring Diameter	Sample Height		Trimm	ings #1	
Measured Reading 1		2.503	0.850	inches	Tare No.	C-1	
Measured Reading 2		2.502	0.850	inches	Tare Weight	2.51	
Measured Reading 3		2.505	0.849	inches	Wet Weight	50.82]
Measured Reading 4		2.503	0.849	inches	Dry Weight	38.60]
Average Reading	1.004	2.503	0.850	inches	M.C. %	33.9%]
Wet Weight + Ring	288.07	Wet+Ring+Tare	358.83	grams Trimm		ings #2]
Weight of Ring	144.11	Dry+Ring+Tare	330.88	grams	Tare No.	C-2]
Specific Gravity	2.66	Tare Weight	82.92	grams	Tare Weight	2.56]
Sample Volume	80.97		66.97	cm³	Wet Weight	43.76]
Height of Solids	0.484		0.484	inches	Dry Weight	33.77]
Void Ratio	1.08		0.72		M.C. %	32.0%]
Saturation	95.6		100.0	percent	Ring Number	410]
Weight of Water	40.11		27.95	grams	Inundated @	0.27	
Moisture Content	38.6		26.9	percent	Trimming Met		Cutting Shoe
Wet Unit Weight	111.0		122.9	pcf		/ Turntable / N	one (Ring)]
Dry Unit Weight	80.1		96.8	pcf	Method Used		<u> </u>
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.	0.830	inches

CALIBRATION OF CONSOLIDATION DEFORMATION Procedure SWCP-15 (Reference ASTM D2435 AASHTO T216)

Equipment Calibrated:	Consolidation Deformation	Date Calibrated:	
Reason for Calibration:	Test Completion	Next Calibration Due:	Next Test
Equipment Used:	Consolidation Appartus	Calibrated By:	CMB
시민 이렇게 되지 않았다면서 하다면 얼굴이 이렇게 되었다면서 하셨다.	Steel Calibration Disk	Checked By:	CMB

Machine Number:	410				100		
Load tsf	Machine Def x 10 ⁻⁴	Correction Factor x 10 ⁻⁴	U-100 × 10 ⁻⁴	Corr. U-100 x 10 ⁻⁴	Compression, Percent	C _v	Void Ratio
0.01	0	0	0	0	0.00%	0	1.08
0.25	41	0	79.0	38	0.38%	3.3E+00	1.07
0.5	56	0	123.0	67	0.67%	3.3E+00	1.06
1.0	72	0	198.0	126	1.26%	2.4E+00	1.05
2.0	92	0	485.0	393	3.93%	1.3E+00	0.99
1.0	84	43	517.0	390	3.90%	NA	0.99
0.5	77	43	506.0	386	3.86%	NA	1.00
1.0	81	43	511.0	387	3.87%	NA	1.00
2.0	83	43	526.0	400	4.00%	NA	0.99
4.0	113	0	838.0	725	7.25%	1.2E+00	0.93
8.0	136	0	1209.0	1073	10.73%	1.0E+00	0.85
16.0	158	0	1541.0	1383	13.83%	1.2E+00	0.79
32.0	177	0	1863.0	1686	16.86%	9.8E-01	0.73

Geotechnical and Environmental Consultants

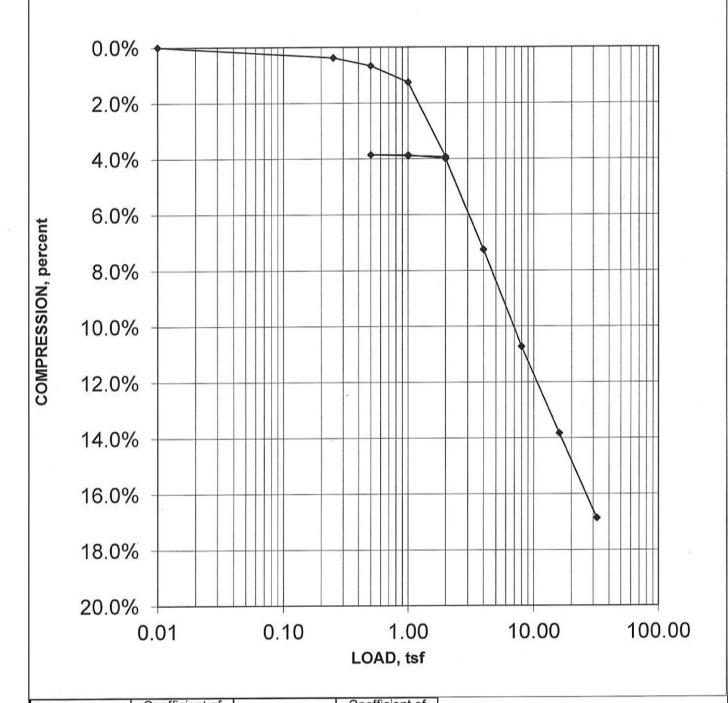
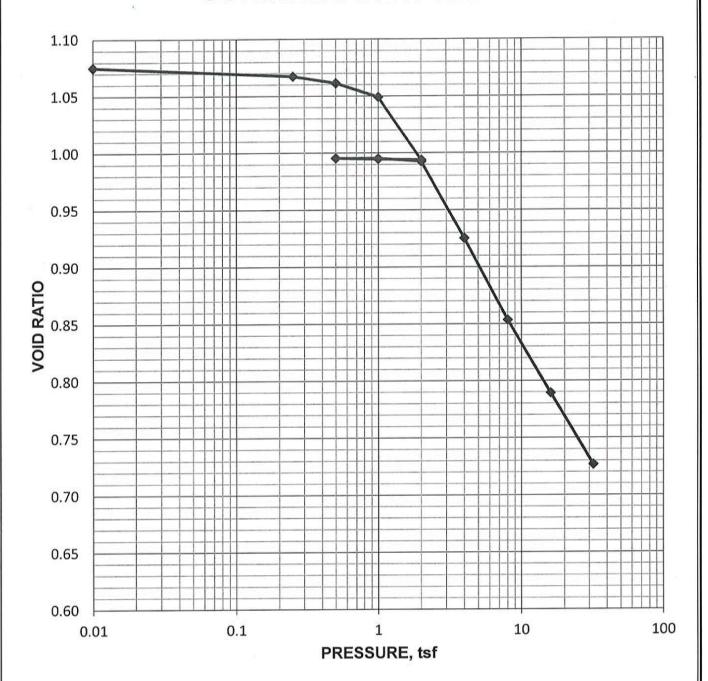

41-1-37431-003

FIG.


October 2015

SHANNON & WILSON, INC.

Geotechnical and Environmental Consultants

	Coefficient of Consolidation,		Coefficient of Consolidation,		
Load, tsf	mm ² /second	Load, tsf	mm ² /second		
0.25	3.3E+00	2.0	NA	AECI Structural Integrity A	ssessment
0.5	3.3E+00	4.0	1.2E+00	Marston, Missou	ri
1.0	2.4E+00	8.0	1.0E+00		
2.0	1.3E+00	16.0	1.2E+00	SETTLEMENT PLOTS	
1.0	NA	32.0	9.8E-01	HA-B4	
0.5	NA			U2	
1.0	NA			October 2015 4	1-1-37431-003
			1	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG.

	Coefficient of		Coefficient of		
	Consolidation,		Consolidation,		
Load, tsf	mm ² /second	Load, tsf	mm ² /second		
0.25	3.3E+00	2.0	NA	AECI Structural Integrity A	ssessment
0.5	3.3E+00	4.0	1.2E+00	Marston, Missou	ri
1.0	2.4E+00	8.0	1.0E+00	Year and the design of the second	5500 E
2.0	1.3E+00	16.0	1.2E+00	VOID RATIO PL	.OT
1.0	NA	32.0	9.8E-01	HA-B4	
0.5	NA			U2	
1.0	NA			October 2015 4	I-1-37431-003
				SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG.

Project	AECI Structura	I Integrity Assess	ment	Client		Haley & Aldrich, Inc.	
Location	Marston, Misso			Tested By / Date		CMB	10/21/15
Job Number	41-1-37431-00		NEWS RESCUE	Calculated By		CMB	10/30/15
Boring	HA-B5			Checked By /		JIB	11/2/15
Sample	U1		S. Hills Eller	File		41-1-37431-003 HA-B5 U1 D243	
Depth (ft)	10.6			Procedure		ASTM D2435	
	Initia	l Data	Final Data				
	Sample Height	Ring Diameter	Sample Height		Trimmi	ings #1	
Measured Reading 1	1.003	2.502	0.876	inches	Tare No.	C-3	1
Measured Reading 2	1.002	2.504	0.878	inches	Tare Weight	2.50	1
Measured Reading 3		2.503	0.887	inches	Wet Weight	60.74	1
Measured Reading 4		2.502	0.880	inches	Dry Weight	48.80	1
Average Reading	1.003	2.503	0.880	inches	M.C. %	25.8%	1
Wet Weight + Ring	279.51	Wet+Ring+Tare	362.76	grams	Trimmi	ings #2	1
Weight of Ring	146.33	Dry+Ring+Tare	332.70	grams	Tare No.	C-4	1
Specific Gravity	2.61	Tare Weight	83.07	grams	Tare Weight	2.49	1
Sample Volume	80.86		69.71	cm³	Wet Weight	51.79	1
Height of Solids	0.492		0.492	inches	Dry Weight	41.96	
Void Ratio	1.04		0.76		M.C. %	24.9%	1
Saturation	72.5		100.0	percent	Ring Number	411]
Weight of Water	29.88		30.06	grams	Inundated @	0.26	tsf
Moisture Content	28.9		29.1	percent	Trimming Meth	nod	Cutting Sho
Wet Unit Weight	102.8		119.4	pcf	[Cutting Shoe		
Dry Unit Weight	79.8		92.5	pcf	Method Used		
Notes: The specific gi		ed assuming satu			Computed Ht.	0.865	inches
Load 1			ad 2		ad 3	Loa	d 4
Air Press.	1.6	Air Press.	2.4	Air Press.	4.0	Air Press.	7.1
Load, tsf	0.26	Load, tsf	0.5	Load, tsf	1.0	Load, tsf	2.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	150	0.1	267	0.1		0.1	590
0.25	154	0.25	276	0.25	438	0.25	598
0.5	159	0.5	281	0.5	443	0.5	604
1	162	1	286	1	447	1	609
2	169	2	289	2	451	2	614
4	173	4	292	4	454	4	618
8	176	8	296	8	458	8	623
17	179	15	300	15	462	15	627
30	182	30	303	30	465	30	631
60		60		60		60	635
120		120		120		120	639
240	X	240	X	240		240	643
480		480		480		370	645
1440		1440		1440		1305	654
Load 5	5	Lo	ad 6	Loa	ad 7	Loa	d 8
Air Press.	4.0	Air Press.	2.4	Air Press.	4.0	Air Press.	7.1
Load, tsf	1.0	Load, tsf	0.5	Load, tsf	1.0	Load, tsf	2.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	644	0.1	630	0.1		0.1	651
0.25	644	0.25	630	0.25		0.25	652
0.5	643	0.5	629	0.5	635	0.5	652
1	643	1	629	1	635	1	653
2	643	2	628	2	635	2	653
4	643	4	627	4	635	4	653
8	642	8	626	8	635	8	654
15	642	15	626	15	636	15	654
30	/	30	/	30		30	655
60		60	/	60		60	/
120		120		120		120	
240	X	240		240		240	X
480		480		480		480	
1440	/	1440	/	1440		1440	1

Project		I Integrity Assess	ment	Client		Haley & Aldrich, Inc.	
Location	Marston, Misso			Tested By / Date		CMB	10/21/15
Job Number	41-1-37431-003	3		Calculated By / Date		CMB	10/30/15
Boring	HA-B5			Checked By / Date		JIB	11/2/15
Sample	U1	(A) \$4 (We) 17 (12)	DIGITOR AND A	File		41-1-37431-003 I	HA-B5 U1 D243
Depth (ft)	10.6		VIII 9 9 9 11 II	Procedure		ASTM D2435	
	Initia	l Data	Final Data				
		Ring Diameter	Sample Height		Trimmi	ings #1	
Measured Reading 1	1.003	2.502	0.876	inches	Tare No.	C-3	1
Measured Reading 2	1.002	2.504	0.878	inches	Tare Weight	2.50	1
Measured Reading 3	1.004	2.503	0.887	inches	Wet Weight	60.74	1
Measured Reading 4	1.003	2.502	0.880	inches	Dry Weight	48.80	1
Average Reading	1.003	2.503	0.880	inches	M.C. %	25.8%	1
Wet Weight + Ring	279.51	Wet+Ring+Tare	362.76	grams		ings #2	1
Weight of Ring	146.33	Dry+Ring+Tare	332.70	grams	Tare No.	C-4	
Specific Gravity	2.61	Tare Weight	83.07	grams	Tare Weight	2.49	1
Sample Volume	80.86		69.71	cm³	Wet Weight	51.79	1
Height of Solids	0.492		0.492	inches	Dry Weight	41.96	1
Void Ratio	1.04		0.76		M.C. %	24.9%	1
Saturation	72.5		100.0	percent	Ring Number	411	1
Weight of Water	29.88		30.06	grams	Inundated @	0.26	tsf
Moisture Content	28.9		29.1	percent	Trimming Meth		Cutting Sho
Wet Unit Weight	102.8		119.4	pcf	[Cutting Shoe / Turntable / No		one (Ring)]
Dry Unit Weight	79.8		92.5	pcf	Method Used		' ' ' '
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.	0.865	inches
Load 9		Load 10		Load 11		Load 12	
Air Press.	13.3	Air Press.	25.9	Air Press.	51.1	Air Press.	101.7
Load, tsf	4.0	Load, tsf	8.0	Load, tsf	16.0	Load, tsf	32.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	774	0.1	994	0.1		0.1	1521
0.25	783	0.25	1006	0.25		0.25	1534
0.5	790	0.5	1013	0.5	1267	0.5	1543
1	796	1	1021	1	1277	1	1552
2	802	2	1028	2		2	1561
4	807	4	1034	4	1291	4	1569
8	814	8	1041	8		8	1576
15	820	15	1046	15		15	1582
30	825	30	1052	30		30	1588
60	830	60	1058	60	1316	60	1594
120	834	120	1062	120	1321	120	1600
240	839	240	1068	240		240	1605
410	842	480	1072	480		480	1611
4245	855	1440	1080	1440		1440	1619

Project	AECI Structural	Integrity Assessi	ment	Client		Haley & Aldric	ch, Inc.
Location	Marston, Misso			Tested By / Date		CMB	10/21/15
Job Number	41-1-37431-003			Calculated By / Date		CMB	10/30/15
Boring	HA-B5			Checked B	y / Date	JIB	11/2/15
Sample	U1			File		41-1-37431-003 H	IA-B5 U1 D2435
Depth (ft)	10.6			Procedure		ASTM D2435	
	The state of the s	l Data	Final Data				
	Sample Height	Ring Diameter	Sample Height		Trimm	ings #1	
Measured Reading 1	1.003	2.502	0.876	inches	Tare No.	C-3	
Measured Reading 2	1.002	2.504	0.878	inches	Tare Weight	2.50	
Measured Reading 3	1.004	2.503	0.887	inches	Wet Weight	60.74	
Measured Reading 4	1.003	2.502	0.880	inches	Dry Weight	48.80	
Average Reading	1.003	2.503	0.880	inches	M.C. %	25.8%	
Wet Weight + Ring	279.51	Wet+Ring+Tare	362.76	grams	Trimmings #2		
Weight of Ring	146.33	Dry+Ring+Tare	332.70	grams	Tare No.	C-4	
Specific Gravity	2.61	Tare Weight	83.07	grams	Tare Weight	2.49	
Sample Volume	80.86		69.71	cm³	Wet Weight	51.79	
Height of Solids	0.492		0.492	inches	Dry Weight	41.96	
Void Ratio	1.04		0.76		M.C. %	24.9%	
Saturation	72.5		100.0	percent	Ring Number	411	
Weight of Water	29.88		30.06	grams	Inundated @	0.26	
Moisture Content	28.9		29.1	percent	Trimming Met		
Wet Unit Weight	102.8		119.4	pcf		/ Turntable / N	one (Ring)]
Dry Unit Weight	79.8		92.5	pcf	Method Used		5 2
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.	0.865	inches

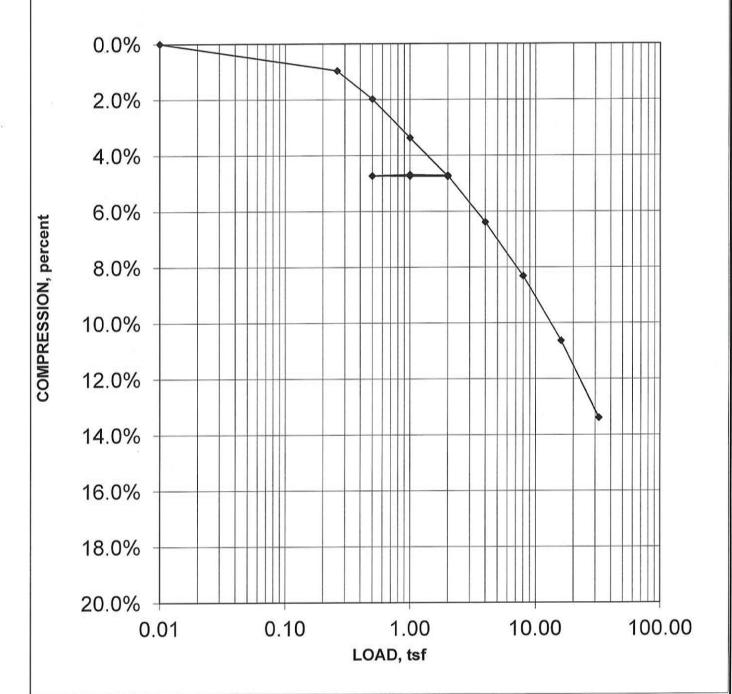
CALIBRATION OF CONSOLIDATION DEFORMATION Procedure SWCP-15 (Reference ASTM D2435 AASHTO T216)

Equipment Calibrated:	Consolidation Deformation	Date Calibrated:	
Reason for Calibration:	Test Completion	Next Calibration Due:	Next Test
Equipment Used:	Consolidation Appartus	Calibrated By:	СМВ
	Steel Calibration Disk	Checked By:	СМВ

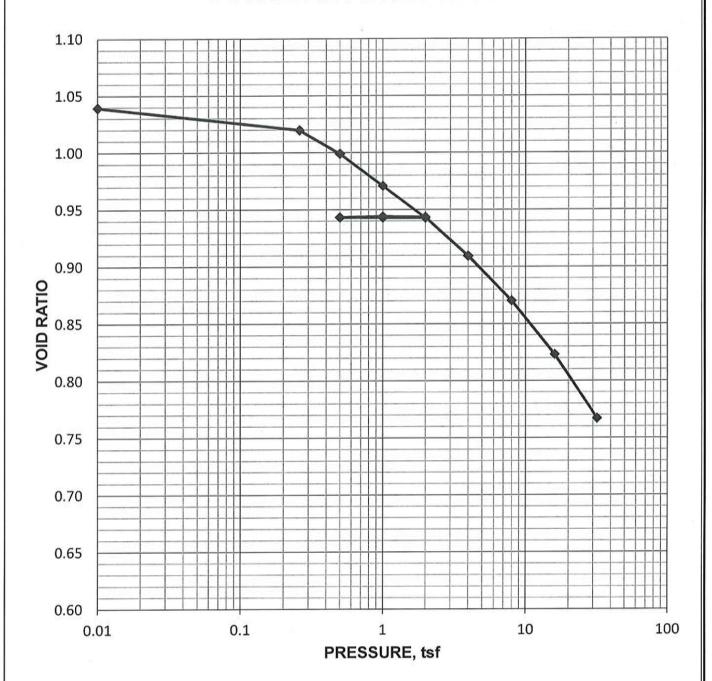
Machine Number:	411						
Load tsf	Machine Def x 10 ⁻⁴	Correction Factor x 10 ⁻⁴	U-100 x 10 ⁻⁴	Corr. U-100 x 10 ⁻⁴	Compression, Percent	C _v	Void Ratio
0.01	0	0	0	0	0.00%	0	1.039
0.26	62	0	159.0	97	0.97%	2.9E+00	1.020
0.5	85	0	283.5	199	1.99%	2.3E+00	0.999
1.0	108	0	445.5	338	3.38%	2.1E+00	0.971
2.0	132	0	607.0	475	4.75%	2.1E+00	0.943
1.0	122	47	643.0	474	4.74%	NA	0.943
0.5	109	47	629.0	473	4.73%	NA	0.943
1.0	119	47	635.0	469	4.69%	NA	0.944
2.0	133	47	652.0	472	4.72%	NA	0.943
4.0	158	0	797.0	639	6.39%	1.7E+00	0.909
8.0	188	0	1020.0	832	8.32%	1.8E+00	0.870
16.0	215	0	1279.0	1064	10.64%	1.5E+00	0.823
32.0	236	0	1575.0	1339	13.39%	6.3E-01	0.767

Geotechnical and Environmental Consultants

Marston, Missouri


TIME PLOTS HA-B5 U1

October 2015


41-1-37431-003

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG.

	Coefficient of Consolidation,		Coefficient of Consolidation,			
Load, tsf	mm ² /second	Load, tsf	mm ² /second			
0.26	2.9E+00	2.0	NA	AECI Structural Integrity A	ssessment	
0.5	2.3E+00	4.0	1.7E+00	Marston, Missouri		
1.0	2.1E+00	8.0	1.8E+00	111111111111111111111111111111111111111		
2.0	2.1E+00	16.0	1.5E+00	SETTLEMENT PLOTS		
1.0	NA	32.0	6.3E-01	HA-B5		
0.5	NA		9	U1		
1.0	NA			October 2015 4	1-1-37431-003	
				SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG.	

	Coefficient of		Coefficient of			
	Consolidation,		Consolidation,			
Load, tsf	mm ² /second	Load, tsf	mm ² /second			
0.26	2.9E+00	2.0	NA	AECI Structural Integrity Assessment		
0.5	2.3E+00	4.0	1.7E+00	Marston, Missouri		
1.0	2.1E+00	8.0	1.8E+00		STORY	
2.0	2.1E+00	16.0	1.5E+00	VOID RATIO PLOT		
1.0	NA	32.0	6.3E-01	HA-B5		
0.5	NA			U1		
1.0	NA			October 2015 41	-1-37431-003	
				SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG.	

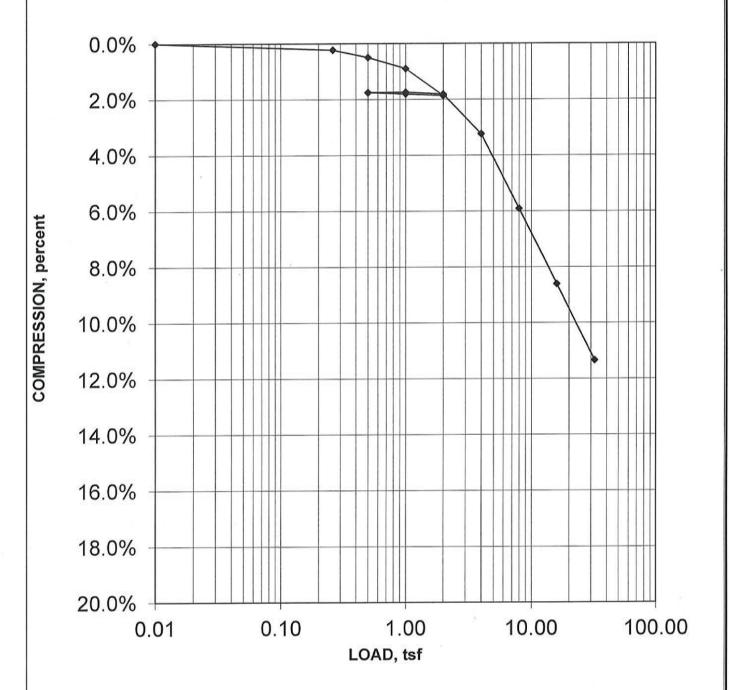
Project	AECI Structura	al Integrity Assess	ment	Client		Haley & Aldrich, Inc.	
Location	Marston, Misso			Tested By / D	ate	CMB	10/21/15
Job Number	41-1-37431-00			Calculated By		CMB	10/30/15
Boring	HA-B5		Tell Harrison	Checked By		TIB	11/2/15
Sample	U2	N / DIRECTOR		File		41-1-37431-003 HA-B5 U2 D243	
Depth (ft)	21.4		AV DESIGNATION	Procedure		ASTM D2435	
Doput (it)		al Data	Final Data	11000000		7.0111122100	
		Ring Diameter	Sample Height		Trimm	ings #1	
Measured Reading 1	1.005	2.504	0.903	inches	Tare No.	C-5	1
Measured Reading 2	1.004	2.502	0.908	inches	Tare Weight	2.49	1
Measured Reading 3		2.505	0.909	inches	Wet Weight	36.19	1
Measured Reading 4	1.004	2.506	0.902	inches	Dry Weight	26.35	1
Average Reading	1.005	2.504	0.906	inches	M.C. %	41.2%	1
	289.07	Wet+Ring+Tare	366.23	grams	Trimm	ings #2	1
Wet Weight + Ring			332.71		Tare No.	C-6	1
Weight of Ring	146.30	Dry+Ring+Tare		grams		2.56	4
Specific Gravity	2.70	Tare Weight	84.36	grams	Tare Weight		-
Sample Volume	81.10		71.38	cm ³	Wet Weight	36.74	1
Height of Solids	0.469		0.469	inches	Dry Weight	26.99	1
Void Ratio	1.14		0.89		M.C. %	39.9%	-
Saturation	94.2		100.0	percent	Ring Number	440	
Weight of Water	40.72		33.52	grams	Inundated @	0.26	
Moisture Content	39.9		32.8	percent	Trimming Met	hod	Cutting Sho
Wet Unit Weight	109.9		118.6	pcf	[Cutting Shoe		one (Ring)]
Dry Unit Weight	78.6		89.3	pcf	Method Used		- V
Notes: The specific gi	ravity is comput				Computed Ht.		inches
Load 1			ad 2		pad 3 Loa		
Air Press.	1.7	Air Press.	2.5	Air Press.	4.0	Air Press.	7.2
Load, tsf	0.26	Load, tsf	0.5	Load, tsf	1.0	Load, tsf	2.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	41	0.1	86	0.1	142	0.1	
0.25	43	0.25	88	0.25	145	0.25	252
0.5	46	0.5	89	0.5	147	0.5	256
1	47	1	90	1	151	1	261
2	48	2	93	2	153	2	265
4	49	4	95	4	154	4	270
8	50	8	97	8		8	
17	51	15	98	15		15	278
30	54	30	101	30		30	281
60		60		60		60	286
120		120		120		120	
240	X	240	X	240		240	293
480		480		480		370	295
1440		1440		1440		1305	303
Load 5	5	Y	ad 6		ad 7	Loa	
Air Press.	4.0	Air Press.	2.5	Air Press.	4.0	Air Press.	7.2
Load, tsf	1.0	Load, tsf	0.5	Load, tsf	1.0	Load, tsf	2.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	294	0.1	281	0.1	282	0.1	301
0.25	293	0.25	280	0.1	282	0.1	302
0.25	293	0.25	280	0.25	282	0.25	302
0.5	292	1	279	0.5	282	0.5	302
2	292		278	2	283	2	303
	291	2 4	278	4	283	4	303
4	290	8	278	8	283	8	303
8				15	283		304
15	290	15	277			15	
30	/	30	/	30		30	305
60	/	60	/	60	/	60	/
120	\times	120	\rightarrow	120	X	120	/
240		240		240		240	
480		480		480		480	
1440		1440		1440		1440	

Project		I Integrity Assess	ment	Client		Haley & Aldrich, Inc.	
Location	Marston, Misso	uri		Tested By / D	ate	CMB	10/21/15
Job Number	41-1-37431-00	3		Calculated By	/ / Date	CMB	10/30/15
Boring	HA-B5		CERTIFICATION OF THE PARTY OF T	Checked By / Date		213	11/2/15
Sample	U2			File		41-1-37431-003 HA-B5 U2 D24	
Depth (ft)	21.4			Procedure	37	ASTM D2435	
	Initia	l Data	Final Data				
	Sample Height	Ring Diameter	Sample Height		Trimmi	ings #1	
Measured Reading 1	1.005	2.504	0.903	inches	Tare No.	C-5	1
Measured Reading 2	1.004	2.502	0.908	inches	Tare Weight	2.49	1
Measured Reading 3	1.004	2.505	0.909	inches	Wet Weight	36.19	1
Measured Reading 4	1.006	2.506	0.902	inches	Dry Weight	26.35	1
Average Reading	1.005	2.504	0.906	inches	M.C. %	41.2%	1
Wet Weight + Ring	289.07	Wet+Ring+Tare	366.23	grams		ngs #2	1
Weight of Ring	146.30	Dry+Ring+Tare	332.71	grams	Tare No.	C-6	1
Specific Gravity	2.70	Tare Weight	84.36	grams	Tare Weight	2.56	1
Sample Volume	81.10		71.38	cm ³	Wet Weight	36.74	1
Height of Solids	0.469		0.469	inches	Dry Weight	26.99	1
Void Ratio	1.14		0.89		M.C. %	39.9%	1
Saturation	94.2		100.0	percent	Ring Number	440	1
Weight of Water	40.72		33.52	grams	Inundated @	0.26	tsf
Moisture Content	39.9		32.8	percent	Trimming Metl		Cutting Sho
Wet Unit Weight	109.9		118.6	pcf		/ Turntable / N	
Dry Unit Weight	78.6		89.3	pcf	Method Used	A) or B	
Notes: The specific gi		ed assuming satu	ration at the end		Computed Ht.	0.884	inches
Load 9		Load 10		Load 11		Load 12	
Air Press.	12.9	Air Press.	26.2	Air Press.	51.2	Air Press.	101.8
Load, tsf	4.0	Load, tsf	8.0	Load, tsf	16.0	Load, tsf	32.0
Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4	Time, min.	Def x10-4
0.1	404	0.1	678	0.1		0.1	
0.25	414	0.25	690	0.25		0.25	
0.5	421	0.5	698	0.5	988	0.5	1294
1	426	1	707	1	997	1	1302
2	433	2	716	2	1005	2	1310
4	439	4	723	4	1011	4	1316
8	445	8	730	8	1018	8	1322
15	449	15	737	15	1025	15	1329
30	455	30	744	30	1032	30	1336
60	458	60	751	60	1039	60	1343
120	464	120	757	120	1044	120	1347
240	470	240	762	240	1050	240	1353
410	473	480	769	480	1056	480	1360
4245	489	1440	777	1440	1065	1440	1369

Project	AECI Structura	Integrity Assess	ment	Client		Haley & Aldrid	ch, Inc.
Location	Marston, Misso			Tested By / Date		CMB	10/21/15
Job Number	41-1-37431-003		Maria de la compansión de	Calculated By / Date		CMB	10/30/15
Boring	HA-B5	DE LA COLO	SVI BUILDING INCHES	Checked By	y / Date	J13	11/2/15
Sample	U2		July Rugille MR	File		41-1-37431-003 H	IA-B5 U2 D2435
Depth (ft)	21.4			Procedure		ASTM D2435	¥
		l Data	Final Data				
	Sample Height	Ring Diameter	Sample Height		Trimm	ings #1	
Measured Reading 1	1.005	2.504	0.903	inches	Tare No.	C-5	
Measured Reading 2		2.502	0.908	inches	Tare Weight	2.49	
Measured Reading 3		2.505	0.909	inches	Wet Weight	36.19	
Measured Reading 4		2.506	0.902	inches	Dry Weight	26.35	
Average Reading	1.005	2.504	0.906	inches	M.C. %	41.2%	
Wet Weight + Ring	289.07	Wet+Ring+Tare	366.23	grams	ams Trimming		
Weight of Ring	146.30	Dry+Ring+Tare	332.71	grams	Tare No.	C-6	
Specific Gravity	2.70	Tare Weight	84.36	grams	Tare Weight	2.56	
Sample Volume	81.10		71.38	cm³	Wet Weight	36.74	
Height of Solids	0.469		0.469	inches	Dry Weight	26.99	
Void Ratio	1.14		0.89		M.C. %	39.9%	
Saturation	94.2		100.0	percent	Ring Number	440	
Weight of Water	40.72		33.52	grams	Inundated @	0.26	
Moisture Content	39.9		32.8	percent	Trimming Met		Cutting Shoe
Wet Unit Weight	109.9		118.6	pcf	[Cutting Shoe	/ Turntable / N	one (Ring)]
Dry Unit Weight	78.6		89.3	pcf	Method Used	(A) or B	
Notes: The specific g	ravity is compute	ed assuming satu	ration at the end	of the test.	Computed Ht.	0.884	inches

CALIBRATION OF CONSOLIDATION DEFORMATION Procedure SWCP-15 (Reference ASTM D2435 AASHTO T216)

Equipment Calibrated:	Consolidation Deformation	Date Calibrated:	The state of the s
Reason for Calibration:	Test Completion	Next Calibration Due:	Next Test
Equipment Used:	Consolidation Appartus	Calibrated By:	CMB
	Steel Calibration Disk	Checked By:	CMB


Machine Number:	440						
Load tsf	Machine Def x 10 ⁻⁴	Correction Factor x 10 ⁻⁴	U-100 x 10 ⁻⁴	Corr. U-100 x 10 ⁻⁴	Compression, Percent	C _v	Void Ratio
0.01	0	0	0	0	0.00%	0	1.14
0.26	23	0	46.0	23	0.23%	2.7E+00	1.14
0.5	38	0	88.0	50	0.50%	3.3E+00	1.13
1.0	55	0	145.0	90	0.90%	5.2E+00	1.12
2.0	74	0	261.0	187	1.87%	2.0E+00	1.10
1.0	70	42	293.0	181	1.81%	NA	1.10
0.5	62	42	280.0	176	1.76%	NA	1.10
1.0	66	42	283.0	175	1.75%	NA	1.10
2.0	78	42	302.0	182	1.82%	NA	1.10
4.0	96	0	420.0	324	3.24%	2.6E+00	1.07
8.0	119	0	710.0	591	5.91%	1.6E+00	1.02
16.0	139	0	1000.0	861	8.61%	1.6E+00	0.96
32.0	165	0	1299.0	1134	11.34%	1.8E+00	0.90

SHANNON & WILSON, INC.

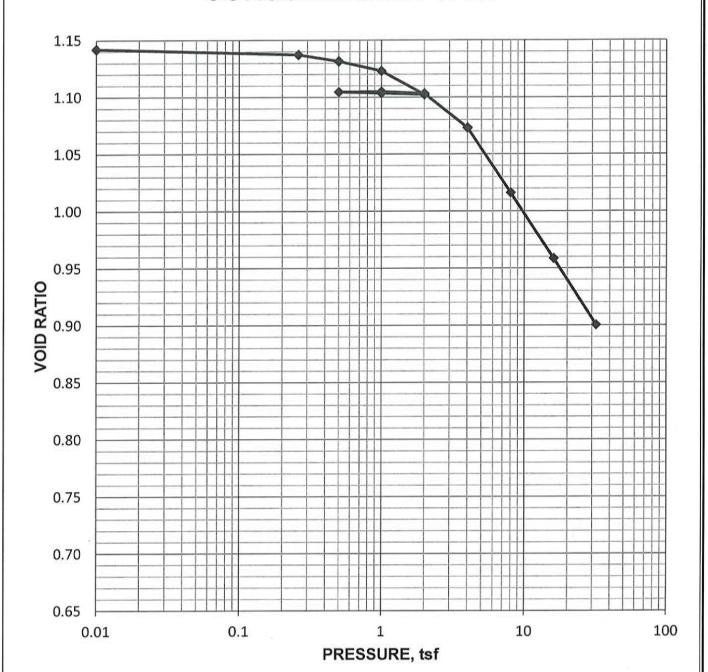

Geotechnical and Environmental Consultants

FIG.

	Coefficient of		Coefficient of		
	Consolidation,		Consolidation,		
Load, tsf	mm ² /second	Load, tsf	mm ² /second	* · ·	
0.26	2.7E+00	2.0	NA	AECI Structural Integrity Assessment	
0.5	3.3E+00	4.0	2.6E+00	Marston, Misso	ouri
1.0	5.2E+00	8.0	1.6E+00	The factor and the control of the co	N-C1204
2.0	2.0E+00	16.0	1.6E+00	SETTLEMENT	PLOTS
1.0	NA	32.0	1.8E+00	HA-B5	
0.5	NA			U2	
1.0	NA			October 2015	41-1-37431-003
				SHANNON & WILSON, INC Geotechnical and Environmental Consultant	1 110

	Coefficient of		Coefficient of		
	Consolidation,		Consolidation,		
Load, tsf	mm ² /second	Load, tsf	mm ² /second		
0.26	2.7E+00	2.0	NA	AECI Structural Integrity Assessment	
0.5	3.3E+00	4.0	2.6E+00	Marston, Missou	ri
1.0	5.2E+00	8.0	1.6E+00		
2.0	2.0E+00	16.0	1.6E+00	VOID RATIO PLOT	
1.0	NA	32.0	1.8E+00	HA-B5	
0.5	NA		M. V. C	U2	
1.0	NA			October 2015 41	-1-37431-003
				SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG.

UNCONSOLIDATED, UNDRAINED STRENGTH IN TRIAXIAL COMPRESSION

Project	AECI Structural	Integrity Assessment		Client Haley & Aldrich		1
Location	Marston, Missou	Marston, Missouri				Date
Job No.	41-1-37431-003	41-1-37431-003		Tested by	CMB	10/09/15
Boring	HA-B5	HA-B5		Calculated by	CMB	10/12/15
Sample	U2	U2		Checked by	CMB	10/12/15
Depth (ft)	20.3 - 20.8	20.3 - 20.8		File	41-1-37431-003-HA-B5-U2 D2850	
Undisturbed/Remold		Undisturbed		Procedure	ASTM	D2850
Description (D2487 + symbol) Dark gray, Silt (ML) (Ash).						

Form Date: Pre-2001

Sample Data

Diameter	2.862	inches		
Height	6.001	inches		
Wet wt. 1045.11 grams				
Initial Deflection (Refore Confinement)				

0.000 inches Initial Deflection (After Confinement)

0.000 inches

Height Change (After Confinement)

0.000 inches

Test Setup Data

Confinement	7.5	psi
Deflection	0.001	inch/division
Load Cons.	1	lb/division

After Test Data

Tare No.	4	
Tare Wt.	103.53	grams
Wet wt.	1128.14	grams
Dry wt.	830.38	grams
Sp. Gravity	2.68	assumed

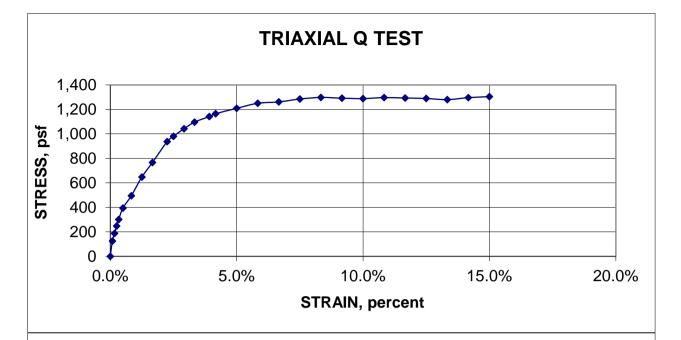
Photograph of Failure

REMARKS:

NOTE: The moisture content is taken from the entire sample after testing is completed.

Test Data

Test Data						
Time	Cell Pressure	Deflection	Load			
hr-min	psi	div (in 0.001 in.)	div			
0:00:00	7.5	0	0			
0:00:08	7.5	5	5.6			
0:00:15	7.5	10	8.4			
0:00:23	7.5	15	11.1			
0:00:30	7.5	20	13.5			
0:00:45	7.5	30	17.7			
0:01:15	7.5	50	22.3			
0:01:53	7.5	75	29.3			
0:02:30	7.5	100	34.8			
0:03:23	7.5	135	42.8			
0:03:45	7.5	150	44.9			
0:04:23	7.5	175	47.9			
0:05:00	7.5	200	50.6			
0:05:53	7.5	235	53.0			
0:06:15	7.5	250	54.2			
0:07:30	7.5	300	56.7			
0:08:45	7.5	350	59.1			
0:10:00	7.5	400	60.1			
0:11:15	7.5	450	61.7			
0:12:30	7.5	500	62.8			
0:13:45	7.5	550	63.0			
0:15:00	7.5	600	63.3			
0:16:15	7.5	650	64.2			
0:17:30	7.5	700	64.5			
0:18:45	7.5	750	64.8			
0:20:00	7.5	800	64.8			
0:21:15	7.5	850	66.1			
0:22:30	7.5	900	67.0			


UNCONSOLIDATED, UNDRAINED STRENGTH
IN TRIAXIAL COMPRESSION

BORING - HA-B5 : SAMPLE - U2October 2015 41-1-37431-003

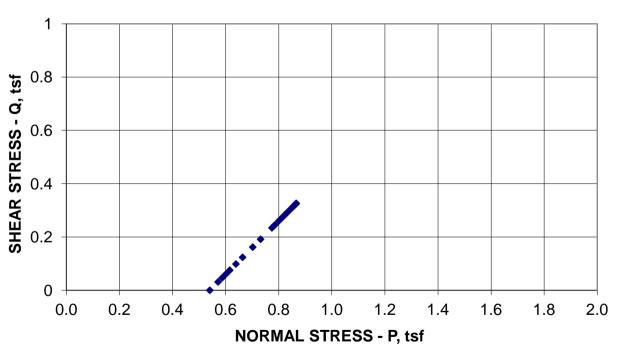

SHANNON & WILSON, INC.
Geotechnical and Environmental

FIG.

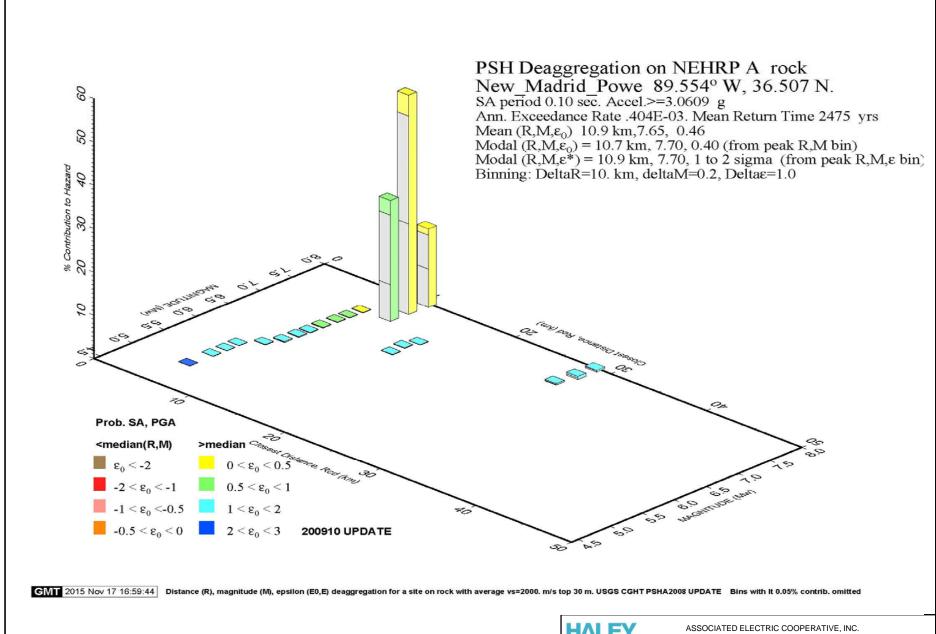
UNCONSOLIDATED, UNDRAINED STRENGTH IN TRIAXIAL COMPRESSION PLOT OF TEST DATA

AECI Structural Integrity Assessment Marston, Missouri

UNCONSOLIDATED, UNDRAINED STRENGTH IN TRIAXIAL COMPRESSION

BORING - HA-B5 : SAMPLE - U2

October 2015

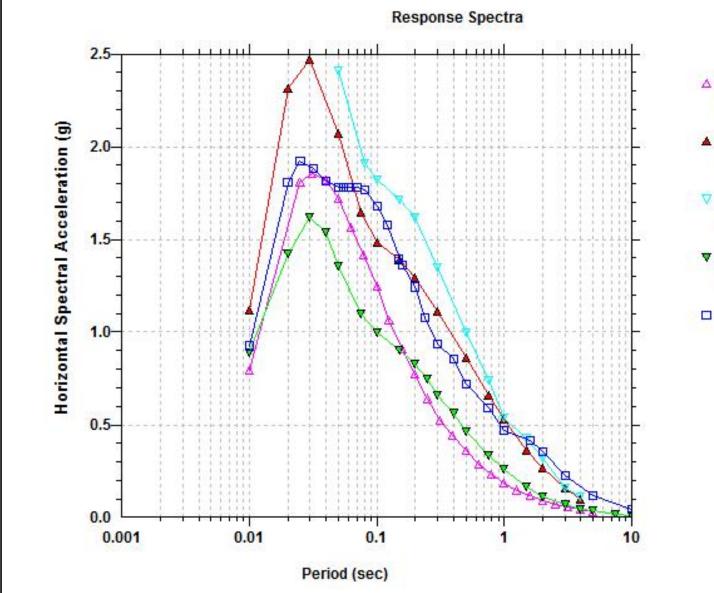

SHANNON & WILSON, INC.

41-1-37431-003 FIG.

Geotechnical and Environmental

APPENDIX D

Analyses



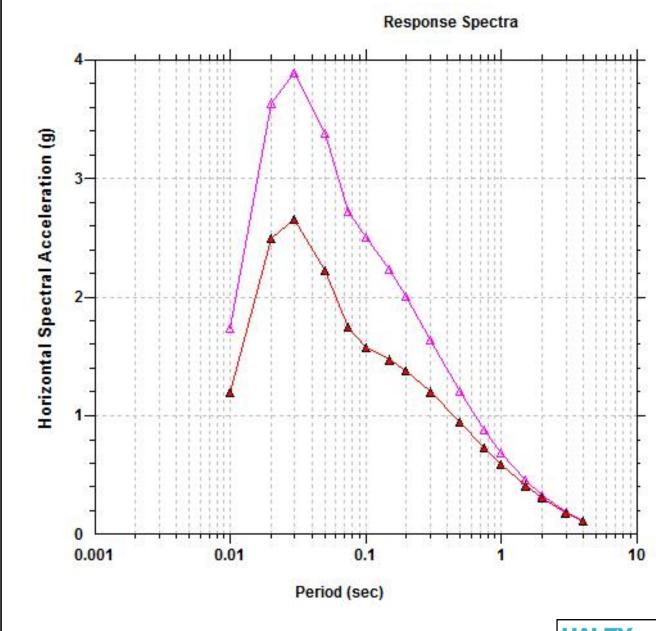
ASSOCIATED ELECTRIC COOPERATIVE, INC. NEW MADRID POWER PLANT 003 UNLINED POND AND 004 SLAG DEWATERING POND MARSTON, MISSOURI

DEGRADATION PLOT AT PERIOD T=0.1s

SCALE: AS SHOWN FEBRUARY 2016

FIGURE D-1

- △ Atkinson & Boore (2006) ENA -Hard Rock - B: 5% - Mw: 7.7 -Rod: 10.7 km
- ▲ Campbell (2003) CEUS B: 5% - Mw: 7.7 - Rrup: 10.7 km
- ▼ Tavakoli & Pezeshk (2005) ENA - Hard-Rock - B: 5% - Mw: 7.7 -Rrup: 10.7 km
- ▼ Pezeshk et al. (2011) ENA -Hard-Rock - β: 5% - Mw: 7.7 -Rrup: 10.7 km
- Silva et al. (2002) CEUS 6: 5% - Mw: 7.7 - Rjb: 10 km



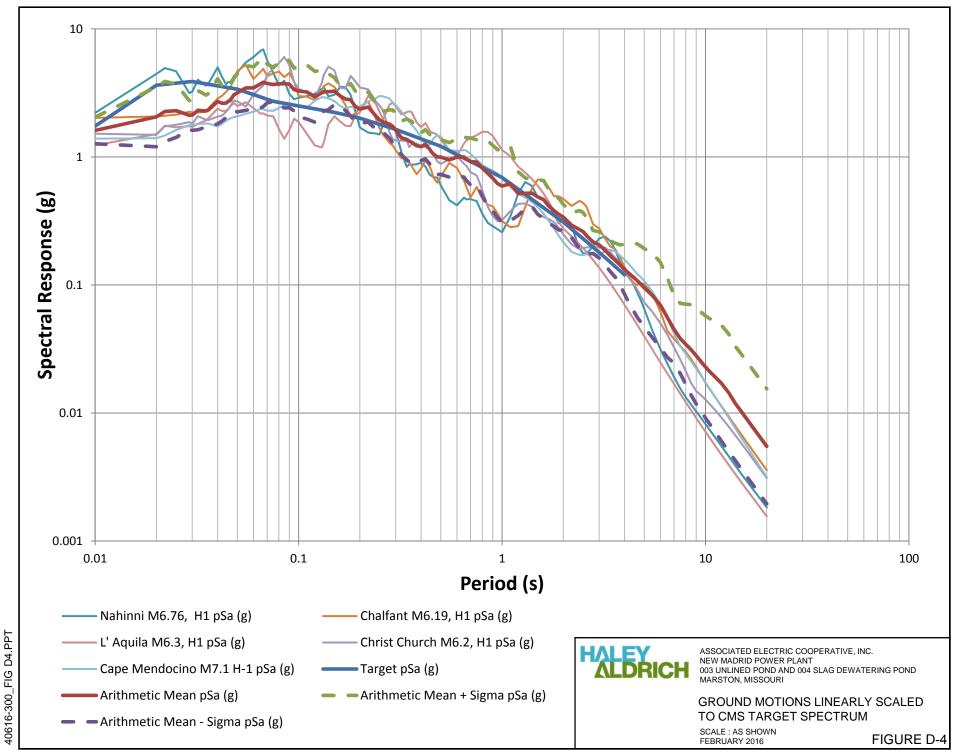
ASSOCIATED ELECTRIC COOPERATIVE, INC. NEW MADRID POWER PLANT 003 UNLINED POND AND 004 SLAG DEWATERING POND MARSTON, MISSOURI

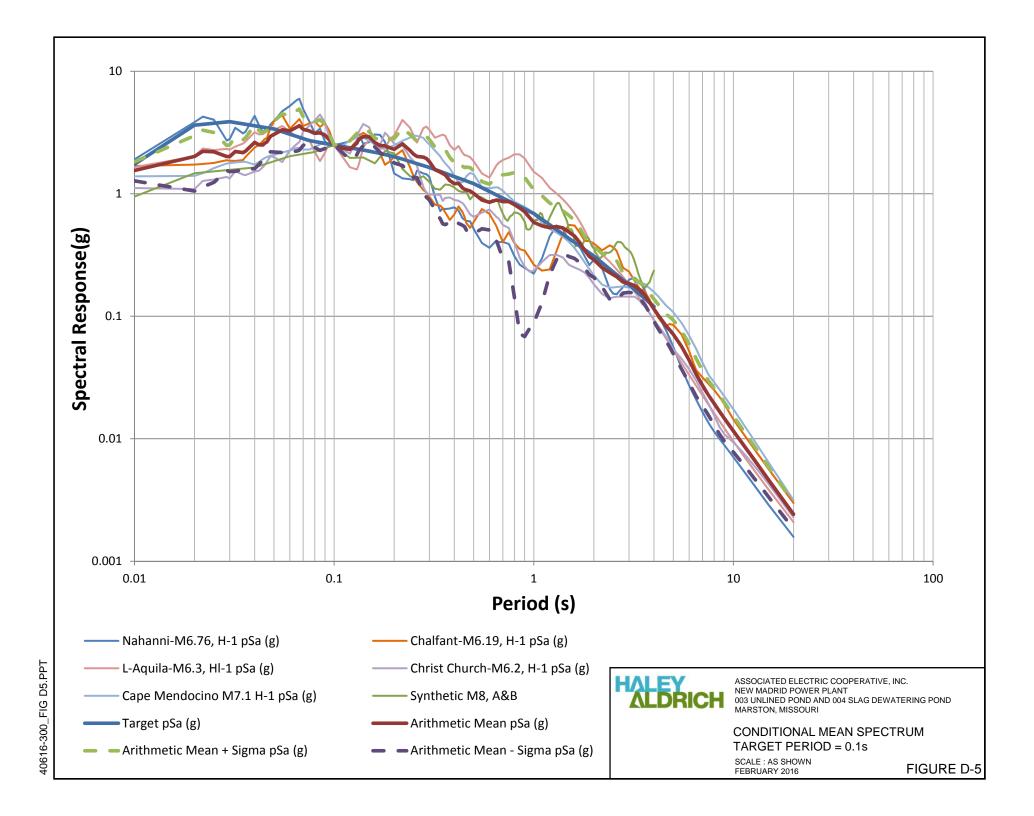
CENTRAL AND EASTERN U.S. GROUND MOTION ATTENUATION MODELS

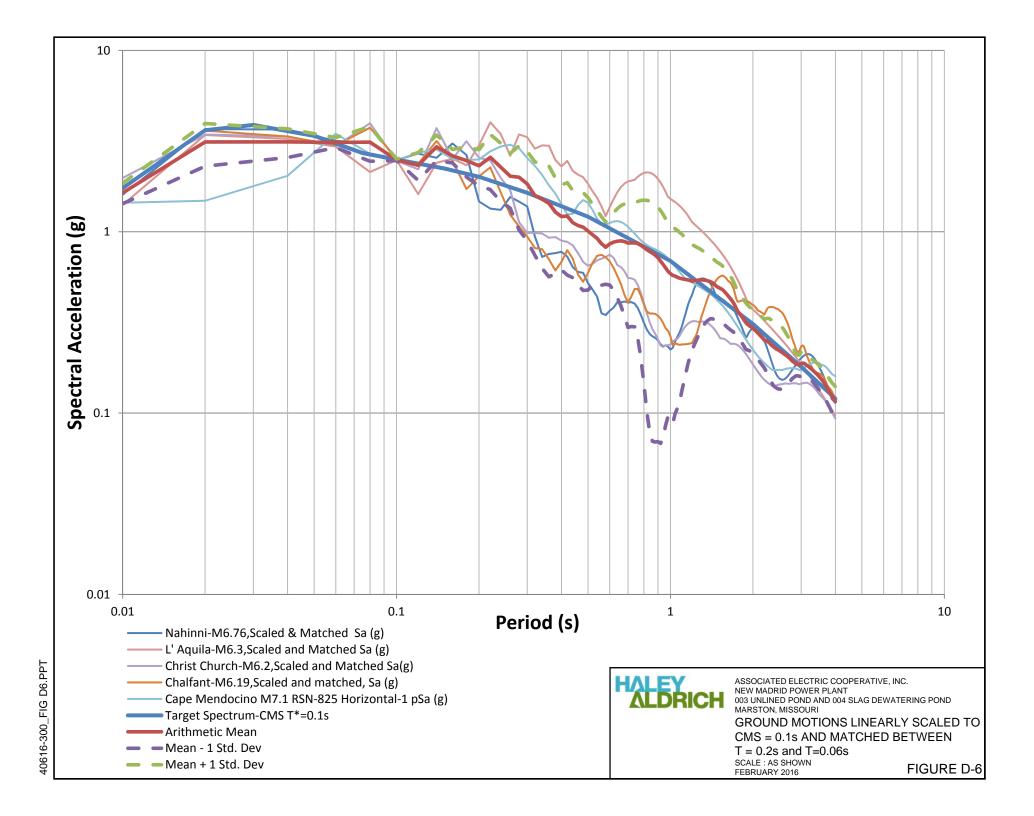
SCALE : AS SHOWN FEBRUARY 2016

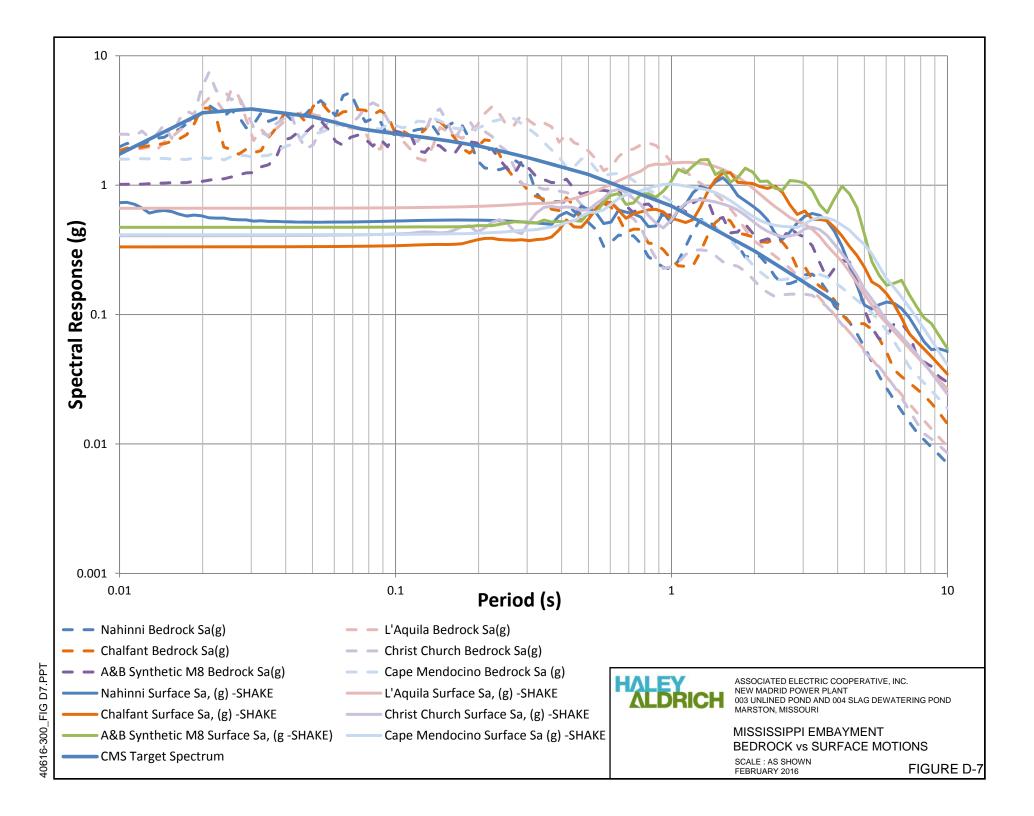
FIGURE D-2

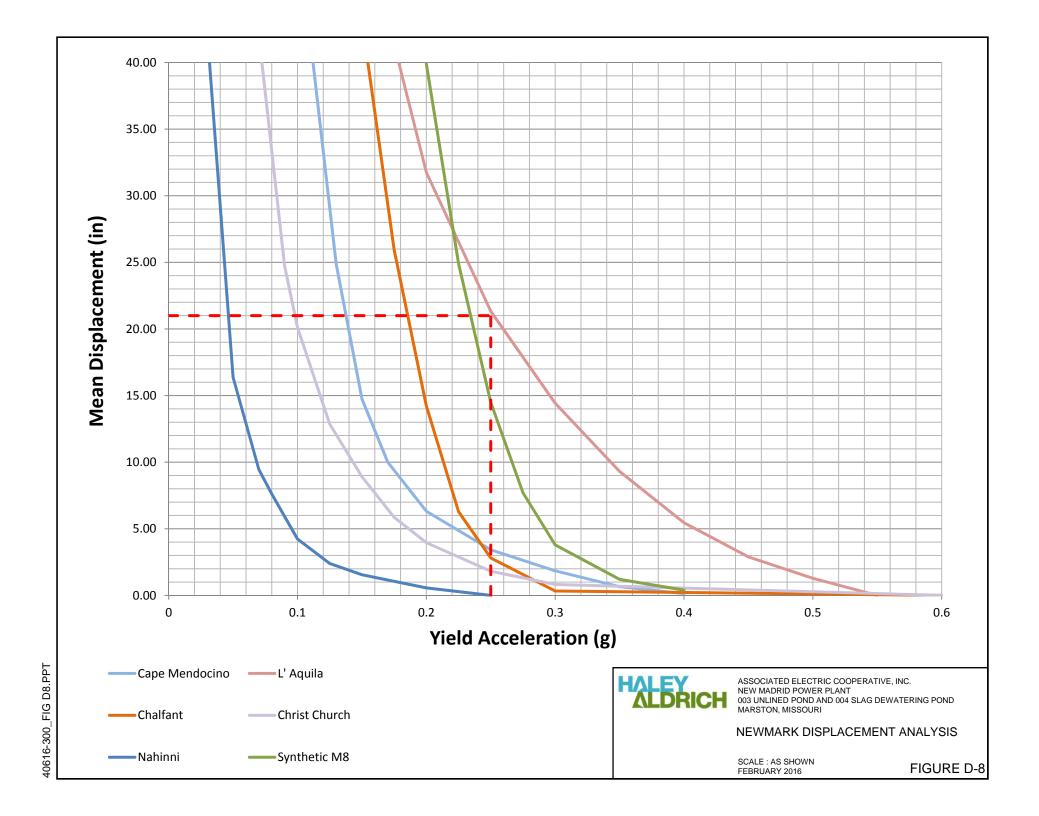
- △ CMS T: .1 Eps: 1 -Campbell (2003) CEUS - B: 5% - Mw: 8 - Rrup: 10.5 km
- ▲ Campbell (2003) CEUS - B: 5% - Mw: 8 - Rrup: 10.5 km


ASSOCIATED ELECTRIC COOPERATIVE, INC. NEW MADRID POWER PLANT 003 UNLINED POND AND 004 SLAG DEWATERING POND MARSTON, MISSOURI


DETERMINISTIC CONDITIONAL MEAN SPECTRUM (CMS)


SCALE: AS SHOWN


FEBRUARY 2016


FIGURE D-3

