

REPORT ON INITIAL SAFETY FACTOR ASSESSMENT CELL 002 WEST THOMAS HILL ENERGY CENTER CLIFTON HILL, MISSOURI

by Haley & Aldrich, Inc. Cleveland, Ohio

for Associated Electric Cooperative, Inc. Springfield, Missouri

File No. 128064-006 April 2018

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

17 April 2018 File No. 128064-006

Associated Electric Cooperative, Inc. 2814 South Golden Avenue P.O. Box 754 Springfield, Missouri 65801

Attention: Kim Dickerson Senior Environmental Analyst

Subject: Report on Initial Safety Factor Assessment Cell 002 West Thomas Hill Energy Center Clifton Hill, Missouri

Ms. Dickerson:

We are pleased to submit herewith our report entitled, "Report on Initial Safety Factor Assessment, Cell 002 West, Thomas Hill Energy Center, Clifton Hill, Missouri." This report includes background information regarding the project, the results of our field investigation program, and the results of our initial safety factor assessment.

This work was performed by Haley & Aldrich, Inc. (Haley & Aldrich) on behalf of Associated Electric Cooperative, Inc. (AECI) in accordance with the United States Environmental Protection Agency's Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, 40 CFR Part 257, specifically §257.73(e). Based on the USEPA's issued CCR Rule Partial Vacatur in 2016, the inactive Cell 002 West impoundment at the THEC is subject to applicable requirements of the CCR Rule. The safety factor assessment discussed herein has been referred to as an "initial" assessment to coincide with the terminology used in §257.73(e) and §257.73(f) to distinguish it from the "periodic" assessments that are required every five years following the "initial" assessment has been completed.

The scope of our work in our initial safety factor assessment consisted of the following: 1) reviewing readily available reports, investigations, plans and data pertaining to the surface impoundment; 2) performing engineering evaluations related to seismic response analysis, liquefaction and slope stability; and 3) preparing and submitting this report presenting the results of our assessment.

Associated Electric Cooperative, Inc. 17 April 2018 Page 2

Thank you for inviting us to complete this assessment and please feel free to contact us if you wish to discuss the contents of the report.

Sincerely yours, HALEY & ALDRICH, INC.

Dem A Shetter

Derrick A. Shelton Geotechnical Program Manager | Senior Associate

Steven F. Putrich, P.E. Principal

Enclosures

	of Tab of Figu		iii iii
1.	Intro	oduction	1
	1.1 1.2 1.3	GENERAL PURPOSE OF SAFETY FACTOR ASSESSMENT ELEVATION DATUM AND HORIZONTAL CONTROL	1 1 1
2.	Des	cription of Pond	2
	2.1	DESCRIPTION OF CELL 002 WEST	2
3.	Field	d Investigation Program	3
	3.1	PREVIOUS EXPLORATIONS AND LABORATORY TESTING PERFORMED BY OTHERS	3
4.	Sub	surface Conditions	4
	4.1 4.2 4.3	GEOLOGY SUBSURFACE CONDITIONS GROUNDWATER CONDITIONS	4 4 4
5.	Safe	ety Factor Assessment	6
	5.1 5.2 5.3 5.4 5.5	DESIGN WATER LEVELS MATERIAL PROPERTIES DESIGN SEISMIC EVENT LIQUEFACTION POTENTIAL EVALUATION STABILITY ANALYSIS 5.5.1 Methodology for Analyses 5.5.2 Pseudo-static Coefficient 5.5.3 Results of Stability Evaluation CONCLUSIONS	6 7 8 8 8 9 9 9
6.	Cert	ification	12
Refe	rence	S	13

i

Page

Tables

Figures

Appendix A – Historic Subsurface Exploration Logs and Laboratory Test Results Appendix B – Analyses and Supporting Information

List of Tables

Table No.	Title
I	Summary of Relevant Historic Subsurface Explorations
П	Summary of Historic Laboratory Test Results
ш	Material Properties
IV	Summary of Stability Evaluations

List of Figures

Figure No.	Title
1	Project Locus
2	Subsurface Exploration Location Plan

1. Introduction

1.1 GENERAL

Haley & Aldrich, Inc. (Haley & Aldrich) has been contracted by Associated Electric Cooperative, Inc. (AECI) to perform the Initial Safety Factor Assessment for Cell 002 West located at Thomas Hill Energy Center in Clifton Hill, Missouri. This work was completed in accordance with the United States Environmental Protection Agency's (EPA's) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities, 40 CFR Part 257, specifically §257.73(e) (EPA, 2015).

1.2 PURPOSE OF SAFETY FACTOR ASSESSMENT

The purpose of this study was to evaluate the subsurface soil and water conditions at the site and to perform the initial safety factor assessment in accordance with Section §257.73(e)(1) of the CCR Rule. To achieve the objective discussed above, the scope of work undertaken for this assessment included the tasks listed below.

- Reviewing readily available reports, investigations, plans and data pertaining to the surface impoundments.
- Evaluating liquefaction susceptibility of material used to construct the impoundment embankments.
- Performing static and seismic stability analyses for rotational failure surfaces using limit equilibrium methods.

1.3 ELEVATION DATUM AND HORIZONTAL CONTROL

The elevations referenced in this report are in feet and are based on the National Geodetic Vertical Datum of 1929 (NGVD29) unless otherwise noted. The horizontal control is the Missouri State Plane North Coordinate System (NAD 83) datum unless otherwise noted.

2. Description of Pond

A summary of relevant information associated with the pond is provided below. Additional details can be found in the Initial Structural Stability Assessment Report prepared by AECI under separate cover. Refer to **Figure 1**, "Project Locus" for the general site location.

2.1 DESCRIPTION OF CELL 002 WEST

Cell 002 West is an unlined surface CCR impoundment located south of the power plant at the Thomas Hill Energy Center in Clifton Hill, Missouri and is one of two basins that form the Cell 002 impoundment. The impoundment is inactive and is currently being pumped to maintain a dry condition to facilitate the ongoing removal of CCR. Cell 002 was designed by Burns & McDonnell during the period 1978-1979 as a single impoundment and was constructed shortly afterwards. It is understood that Cell 002 was modified in the 1980's when Cell 001 was constructed north of Cell 002. Modifications to Cell 002 in 2015 included construction of a separator berm that split the impoundment into east and west basins. The separator berm was designed by Gredell Engineering Resources, Inc.

Cell 002 West covers an area of approximately 12.5 acres. The stormwater storage capacity of Cell 002 West is estimated to be 72 acre-feet at its discharge elevation. On the north side, Cell 002 is partially abutted by Cell 001 and is partially incised. Similarly, the impoundment is incised on the west side. The crest of the separator berm on the east side of the impoundment is at approximately El. 721 and is approximately 8-ft wide (at the crest). Historic records show that the 21-ft high separator berm was constructed from clay obtained from an on-site borrow source that was placed and compacted in a controlled manner. The east and west slopes of the separator berm were constructed with approximately 3 horizontal to 1 vertical (3H:1V) slopes. To the south, the crest of the embankment that separates Cell 002 from Cell 003 is approximately 10-ft wide and is at approximately El. 727. The upstream slope of the 27-ft high embankment is approximately 3H:1V, while the downstream slope varies between approximately 2H:1V and 3H:1V.

Discharge from the west basin is via a 15-in. diameter corrugated metal pipe (CMP) with an invert at El. 718. The CMP penetrates the south embankment and discharges into Cell 003. Discharge from the east basin is via a concrete drop inlet structure built during the original construction of Cell 002. When the water level in the basin reaches normal pool level (El. 717), water enters the structure and flows to Cell 003 through a discharge pipe that runs through the south embankment.

3. Field Investigation Program

3.1 PREVIOUS EXPLORATIONS AND LABORATORY TESTING PERFORMED BY OTHERS

A subsurface exploration and laboratory testing program was previously completed at the site by others. The approximate locations of the relevant historic subsurface explorations performed by others are shown on the attached **Figure 2**. A brief summary of the explorations is provided below, and details of relevant explorations are presented in **Table I**¹. Note that the term "relevant" explorations refers to explorations from previous investigations by others that were directly used in our safety factor assessment.

- One (1) test boring was performed by Geotechnology on 13 January 2010 as part of a global stability evaluation of Cell 002. The test boring log and laboratory test results associated with this investigation are included in Appendix A.
- One (1) cone penetrometer sounding was performed by Stratigraphics, Inc. on 3 February 2010 as part of a global stability evaluation of Cell 002. The log associated with this investigation is included in **Appendix A**.

¹ Note: A table that does not appear near its citation can be found in a separate table at the end of the report.

4. Subsurface Conditions

4.1 GEOLOGY

Thomas Hill Energy Center is located within the Dissected Till Plains subprovince of the Central Lowlands physiographic province and is underlain by recent alluvium and glacial till deposits. These deposits are underlain regionally by a sequence of bedrock formations ranging in age from Cambrian to Pennsylvanian (Miller and Vandike, 1997).

Alluvium and glacial till deposits underlying the ponds typically consist of clay, silty clay, silty clay with trace sand and gravel, and clayey to sandy silt. Siltstone and shale bedrock is present at a depth ranging from 27 to 36 feet (Geotechnology, 2010, 2012a, 2012b).

4.2 SUBSURFACE CONDITIONS

Descriptions of the soil conditions encountered in the test boring and CPT sounding during the historic subsurface exploration program conducted at the site are provided below in order of increasing depth below ground surface. Actual soil conditions between exploration locations may differ from these typical descriptions. Refer to the logs in **Appendix A** for specific descriptions of soil samples obtained from the historic test boring.

The subsurface conditions identified by the historic CPT sounding does not represent material classifications based on grain-size distributions, index tests, or visual observation. Rather, the historic CPT sounding provides an indicator of relative behavior type based on the mechanical characteristics measured during the sounding. For this reason, the descriptions of subsurface conditions discussed below are <u>only</u> based on classifications of samples obtained from the historic test boring and the results of historic laboratory testing.

- <u>SOUTH EMBANKMENT FILL</u> Below the ground surface in historic test boring C-1 performed at the south embankment, there is a stratum of man-placed FILL primarily described as brown and gray lean CLAY (CL), with trace silt and sand. This stratum was fully penetrated, and the thickness of this stratum was approximately 11 ft. The consistency of fine-grained soils encountered in this stratum ranged from medium stiff to stiff.
- <u>CLAY</u> Below the SOUTH EMBANKMENT FILL at test boring C-1, there is a stratum of natural soil primarily described as fat CLAY (CH) with sand and gravel and silty lean CLAY (CL). This stratum was not fully penetrated at boring C-1. The consistency of fine-grained soils encountered in this stratum ranged from medium stiff to stiff.

4.3 GROUNDWATER CONDITIONS

Water levels at the site discussed herein are based on the water levels measured in the historic test borings and estimated by the recent CPT soundings. A brief summary of measured water levels is provided below and summarized in **Table I**.

Test Boring(s) - Water was not encountered in historic test boring C-1.

 CPT Sounding(s) – An estimated water level was not reported for historic CPT sounding CC01. It should be noted that measurements typically estimated during a CPT sounding do not involve physical observation of water levels, but rather an estimated water level based on pore pressure measurements. The estimates of water levels at CPT soundings should only be considered accurate to the degree implied by the determination method.

Water level readings have been made in the subsurface explorations at times and under conditions discussed herein. However, it must be noted that fluctuations in the level of the water may occur due to variations in power plant sluicing activities, season, rainfall, temperature, dewatering activities, and other factors not evident at the time measurements were made and reported herein.

5. Safety Factor Assessment

As mentioned previously, the purpose of this study was to perform an initial safety factor assessment in accordance with Section §257.73(e)(1) of the CCR Rule. As required by the CCR Rule, the certified initial safety factor assessment is performed for a CCR unit to determine calculated factors of safety for each CCR unit relative to the minimum prescribed safety factors for the critical cross section of the embankment. The minimum required safety factors are defined as follows:

- For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.
- The calculated static factor of safety under the long-term, maximum storage pool loading conditions must equal or exceed 1.50.
- The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.
- The calculated seismic factor of safety must equal or exceed 1.00.

Stability analyses have been performed in general conformance with the principles and methodologies described in the USACE Slope Stability Manual (U.S. Army Corps of Engineers, 2003). Conventional static and seismic stability analyses of the impoundment embankments were performed for rotational failures using limit equilibrium methods. Limit equilibrium methods compare forces, moments, and stresses which cause instability of the mass of the embankment to those which resist that instability. The principle of the limit equilibrium method is to assume that if the slope under consideration were about to fail, or at the structural limit of failure, then one must determine the resulting shear stresses along the expected failure surface. These determined shear stresses are then compared with the shear strength of the soils along the expected failure surface to determine the safety factor. The details of the analyses performed for the Lined Pond are presented in the following sections of this report.

5.1 DESIGN WATER LEVELS

In accordance with the CCR Rule, the water retained in an impoundment must be modeled at the maximum storage pool and maximum surcharge pool levels for the static, long-term condition. For the seismic evaluation, the maximum storage pool level must be used to model the retained water. A summary of the maximum storage pool and surcharge pool water levels for Cell 002 are provided below.

		Maximum	Maximum
Location	Crest	Storage Pool Level	Surcharge Pool Level
South Embankment	El. 727	El. 718	El. 727
Separator Berm	El. 721	El. 718	El. 721

The elevation of the phreatic surface within the south embankment and at the toe of slope were estimated based on conditions encountered in nearby subsurface explorations. Additionally, there is no current evidence of seepage emanating from the exterior slopes of the embankments, suggesting that the phreatic surface is contained within and/or below the embankments.

Given the prescribed impoundment pool levels and the observed static groundwater levels discussed above, a seepage analysis was performed to determine the piezometric head between the upstream slope of the impoundment embankments and the downstream toe of the embankments. The computer

software program, Slide 7.0, developed by RocScience, Inc., was used to perform the seepage analyses. The water in Cell 003 was modeled at El. 710, which corresponds the normal operating level. The water in the Cell 002 east basin was conservatively modeled at El. 707, which is 10 ft below the discharge inlet elevation. Permeability values for embankment material layers were estimated from typical published values based on material description and correlations to grain size. During the course of the seepage analyses, minor adjustments were made to the permeability values and isotropic permeability ratios to best model the conditions observed in the field. Results from the seepage analysis provided pore pressure values within the seepage model that were then imported into the slope stability models for the southern embankment and separator berm.

The seepage models suggest that much of the seepage emanating from the impoundments is moving laterally through the southern embankment and separator berm. The phreatic surfaces used in the slope stability models are shown on the slope stability graphical output included in **Appendix B**.

5.2 MATERIAL PROPERTIES

The material properties used in our analyses have been evaluated using the results of the historic analyses performed by Geotechnology, historic subsurface explorations, and historic laboratory testing. In cases where subsurface explorations, laboratory test data, and historic properties did not exist for certain materials, properties were estimated based on typical values developed from empirical correlations and Haley & Aldrich's experience with similar materials. Specifically, the material properties for the separator berm fill were estimated using empirical correlations based on the laboratory testing and field QC testing performed during construction. A summary of the material properties used in our slope stability analyses are provide below in **Table III.** Additional details regarding soil property characterization are provided in **Appendix B**.

Material	Material Strength	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)	Su (psf)
Couth Emboulument Fill	Drained	125	100	28	
South Embankment Fill	Undrained	125			1300
c	Drained	125	100	28	
Separator Berm Fill	Undrained	125	5 772 (6772	1300
Cl	Drained	120	50	27	
Clay Layer 1	Undrained	120			1700
d	Drained	120	50	27	
Clay Layer 2	Undrained	120			1600
	Drained	120	50	27	
Clay Layer 3	Undrained	120	5 777 2 (1100
	Drained	120	50	27	
Clay Layer 4	Undrained	120		**	950

5.3 DESIGN SEISMIC EVENT

The earthquake conditions used in our analyses correspond to the peak ground acceleration for a seismic event with a 2% probability of exceedance in 50 years (2,500-year return period). The gridded hazard map data associated with the latest USGS National Seismic Hazard maps developed in 2014 indicates that the bedrock peak ground acceleration (PGA) at the site for the 2,500-year earthquake event is 0.057g, with the greatest contribution to the hazard coming from an earthquake with a modal magnitude of 7.8 as indicated on the deaggregation chart included in **Appendix B**. The bedrock PGA value was adjusted by the USGS site coefficient, F_{PGA}, of 1.6 for Site Class D to determine the peak free field ground acceleration of 0.091g. Note that the value of peak free field acceleration corresponds to the peak ground acceleration at the base of the impoundment embankment.

5.4 LIQUEFACTION POTENTIAL EVALUATION

During strong earthquake shaking, loose, saturated cohesionless soil deposits may experience a sudden loss of strength and stiffness, sometimes resulting in loss of bearing capacity, large permanent lateral displacements, and/or seismic settlement of the ground. This phenomenon is called soil liquefaction. In accordance with the requirements of §257.73(e)(1), evaluations have been performed to assess the potential for liquefaction of the soils used to construct the impoundment embankment.

The results of the historic subsurface explorations performed at the site indicate that the soils used to construct the impoundment embankments primarily consist of lean CLAY and fat CLAY. These materials are not susceptible to liquefaction due to their high fines content and plasticity. In accordance with the requirements of §257.73(e)(1), a post-liquefaction stability analysis is not required since the soils used to construct the embankment are not susceptible to liquefaction in their current state.

5.5 STABILITY ANALYSIS

5.5.1 Methodology for Analyses

The computer software program Slide 7.0 was used to evaluate the static and seismic stability of the impoundment embankments. Analyses for static stability were performed to evaluate long-term maximum storage pool condition and maximum surcharge pool condition using Spencer's method of slices. Spencer's method of slices was selected because it fully satisfies the requirements of force and moment equilibrium (limit equilibrium method).

Both circular and translational (block) failures were evaluated. Translational failures were only evaluated where subsurface conditions included a relatively weak embankment or foundation layer located above or below a relatively strong foundation layer, such as soft clay overlying dense sand. The results of our evaluation of circular and translational failures indicated that circular failure surfaces represent the critical slope failure case. Accordingly, the results presented herein are limited to the critical case analyses performed for circular failure surfaces.

Seismic stability was evaluated using pseudo-static analyses. Pseudo-static analyses model the seismic shaking as a "permanent" body force that is added to the force-body diagram of a conventional static limit-equilibrium analysis; typically, only the horizontal component of earthquake shaking is modeled because the effects of vertical forces tend to average out to near zero (Jibson, 2011). This is a traditional

approach for evaluating the stability of a slope during earthquake shaking and provides a simplified safety factor analysis for one earthquake pulse. A 20 percent reduction in material strength was conservatively incorporated in the pseudo-static analyses to represent the approximate threshold between large and small strains induced by cyclic loading (Duncan, 2014). In pseudo-static analyses, a safety factor greater than or equal to one (FS \geq 1.0) generally indicates a slope is stable and a safety factor below one (FS < 1.0) generally indicates that a slope is unstable.

5.5.2 Pseudo-static Coefficient

The pseudo-static coefficient, k_s , used in our seismic analyses was calculated using the equation below, which uses the peak free field acceleration discussed above after adjusting it to represent the acceleration at the top of the impoundment embankment, k_{max} . In addition, a reduction factor of 0.50 as recommended by Hynes-Griffin and Franklin was applied to the value of k_{max} .

$$k_s = 0.50 \times \frac{k_{\text{max}}}{g} = 0.50 \times \frac{0.14g}{g} = 0.07$$

5.5.3 Results of Stability Evaluation

The critical cross section is defined as that which is anticipated to be most susceptible to failure amongst all cross sections. To identify the critical cross section at our project site, we examined the following conditions at several cross-section locations at each impoundment:

- a. the geometry of the upstream and downstream embankment slopes;
- b. phreatic surface levels within and below the cross sections;
- c. subsurface soil conditions;
- d. presence or lack of surcharge loads behind the crest of the embankments; and
- e. presence or lack of reinforcing measures in front of the embankments.

Examination of the conditions noted above resulted in the identification of two cross sections that could potentially be considered the critical cross-section. The location of each cross section is shown on **Figure 2**. The results of our analyses are presented below in **Table IV** and are shown on the Slide output files included in **Appendix B**.

As shown below, the static safety factors are above the minimum required values for each cross-section that was evaluated. Similarly, the pseudo-static analyses for the analyzed sections indicate an acceptable seismic safety factor.

The analyses discussed herein have been performed for the impoundment configuration understood at this time for the existing condition of Cell 002 West. Should impoundment heights, slope angles, surcharges, or water levels (upstream or downstream) change, the conclusions contained in this report should not be considered valid unless the changes are reviewed by Haley & Aldrich and the conclusions of this report modified or verified in writing.

Cross Section	Condition ¹	Earthquake Event	Soil Strength	Pool Level	Required Safety Factor	Calculated Safety Factor
	Chatle		Drained	Maximum Storage	1.50	1.56
2A-2A' (South Embankment)	Static	-	Drained	Maximum Surcharge	1.40	1.53
	Seismic 2,500-year		Undrained ²	Maximum Storage	1.00	1.55
			Drained	Maximum Storage	1.50	1.50
2B-2B' (Separator Berm)	Static	-	Drained	Maximum Surcharge	1.40	1.50
	Seismic	2,500-year	Undrained ²	Maximum Storage	1.00	1.80

1. Refer to Table III for material properties.

2. Soil strengths have been reduced by 20 percent for seismic analyses to represent the approximate threshold between large and small strains induced by cyclic loading.

5.6 CONCLUSIONS

The analyses associated with the safety factor assessment have been performed in accordance with the requirement of Section §257.73(e) of the CCR Rule. A summary of our conclusions as they relate to the rule requirements are provided below.

• §257.73(e)(1)(i) - The calculated static factor of safety under the long-term, maximum storage pool loading conditions must equal or exceed 1.50.

As shown in Table IV, the static safety factors for the long-term maximum storage pool condition are above the minimum required value for the critical section analyzed. Accordingly, this requirement has been met.

• §257.73(e)(1)(ii) - The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

As shown in **Table IV**, the static safety factors for the maximum surcharge pool loading condition are above the minimum required value for the critical section analyzed. Accordingly, this requirement has been met.

• §257.73(e)(1)(iii) - The calculated seismic factor of safety must equal or exceed 1.00.

As shown in **Table IV**, the calculated seismic safety factor is above the minimum required value for the critical section analyzed. Accordingly, this requirement has been met.

• §257.73(e)(1)(iv) - For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

The results of historic subsurface investigations indicate that the materials used to construct the impoundment embankments are not susceptible to liquefaction. Accordingly, this requirement has been met.

6. Certification

Signed:

Based on our review of the information provided to us by AECI and the results our analyses, it is our opinion that the calculated factors of safety for the critical cross section of the impoundment embankment meets the minimum factors of safety specified in §257.73(e)(1)(i) through (iv) of the EPA's CCR Rule.

Certification Statement - Cell 002 West

I certify that the Initial Safety Factor Assessment for Cell 002 West at the Thomas Hill Energy Center meets the requirements of §257.73(e) of the EPA's CCR Rule.

Certifying Engineer

Print Name: Missouri License No.: Title: Company: Steven F. Putrich 2014035813 Project Principal Haley & Aldrich, Inc.

Professional Engineer's Seal:

References

- DeHavilland, A. et al. (2004). "Geotechnical and Stability Analyses for Ohio Waste Containment Facilities." Ohio Environmental Protection Agency Geotechnical Resource Group. Columbus, Ohio, p. 8-1.
- Duncan, J.M., Wright, S.G, and Brandon, T.L. (2014). Soil Strength and Slope Stability. John Wiley & Sons, Upper Saddle River, 2nd Edition, pp. 182-184.
- Environmental Protection Agency, (2015). Code of Federal Regulations, "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, "Title 40, Chapter I, Parts 257 and 261, April 17.
- 4. Geotechnology, Inc. (February 2012a). "Slope Stability and Seepage Analysis, Slag Dewatering Basin, Thomas Hill Energy Center". [*Note this refers to the current Cell 001 impoundment*]
- 5. Geotechnology, Inc. (February 2012b). "Slope Stability and Seepage Analysis, Ash Pond No. 3, Thomas Hill Energy Center". [Note this refers to the current Cell 004 impoundment]
- 6. Geotechnology, Inc (2010). "Global Stability Evaluation, Mine Waste and Ash Pond Embankments, AECI Facilities, Bee Veer and Thomas Hill, Missouri". {*Note this report refers to the current Cell 003* impoundment]
- Hynes-Griffin, M.E. and Franklin, A.G. (1984). "Rationalizing the seismic coefficient method," [Miscellaneous Paper GL-84-13]. U.S. Army Corp of Engineers Waterways Experiment Station. Vicksburg, Mississippi, p. 21.
- Jibson, R.W., (2011). "Methods for assessing the stability of slopes during earthquakes—A Retrospective," Engineering Geology, v. 122, p. 43-50.
- 9. Miller, D.E and Vandike, J.E. (1997). "Groundwater Resources of Missouri" Missouri State Water Plan Series Volume II, Missouri Department of Natural Resources.
- 10. Mine Safety and Health Administration U.S. Department of Labor (MSHA), (May 2009. Rev. August 2010). Engineering and Design Manual Coal Refuse Disposal Facilities Second Edition.
- U.S. Army Corps of Engineers (2003). "Engineering and Design: Slope Stability," Engineer Manual EM-1110-2-1902, Department of the Army, U.S. Army Corps of Engineers, Washington, DC, October.

TABLES

TABLE I SUMMARY OF RELEVANT HISTORIC SUBSURFACE EXPLORATIONS AECI THOMAS HILL CELL 002 WEST INITIAL SAFETY FACTOR ASSESSMENT CLIFTON HILL, MISSOURI

Exploration			Ground	Total	Water ³
Designation ¹	Performed By	Year	Surface El. ² (ft)	Exploration Depth (ft)	Depth Below Ground Surface
		1	EST BORING		
C-1	Geotechnology, Inc.	2010	735.0	50.0	Not Measured
		CONE PENE	TROMETER SOUNDING	G	
CC01	Stratigraphics, Inc.	2010	728.0	49.8	Unknown

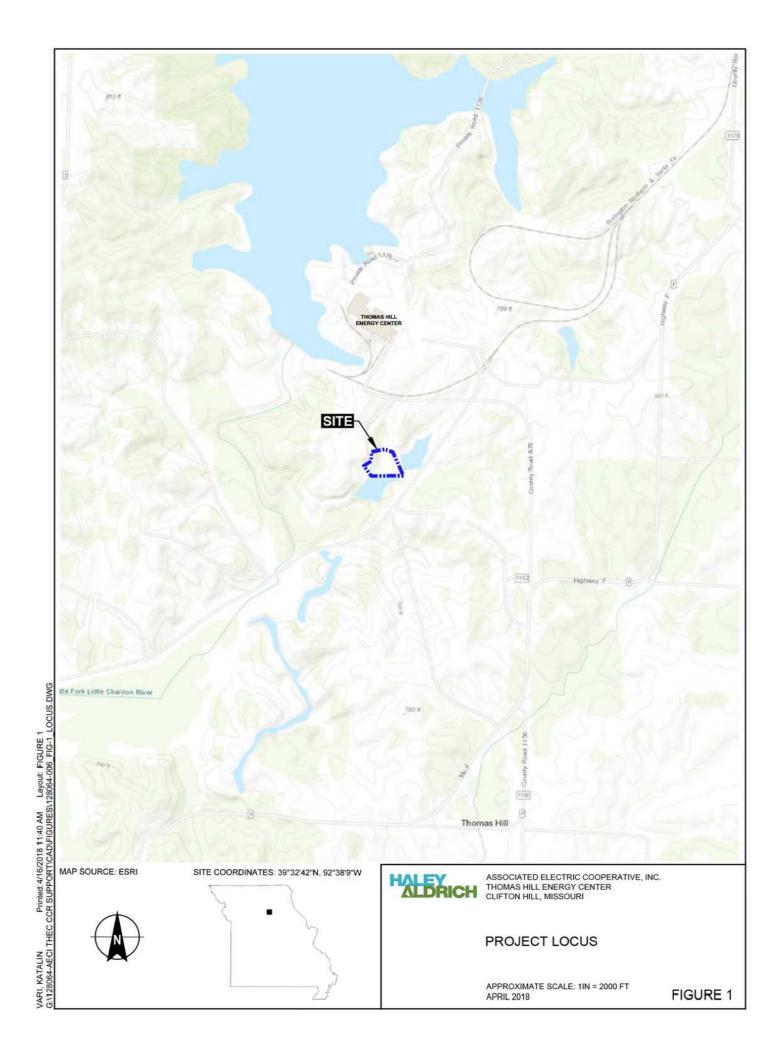
Notes:

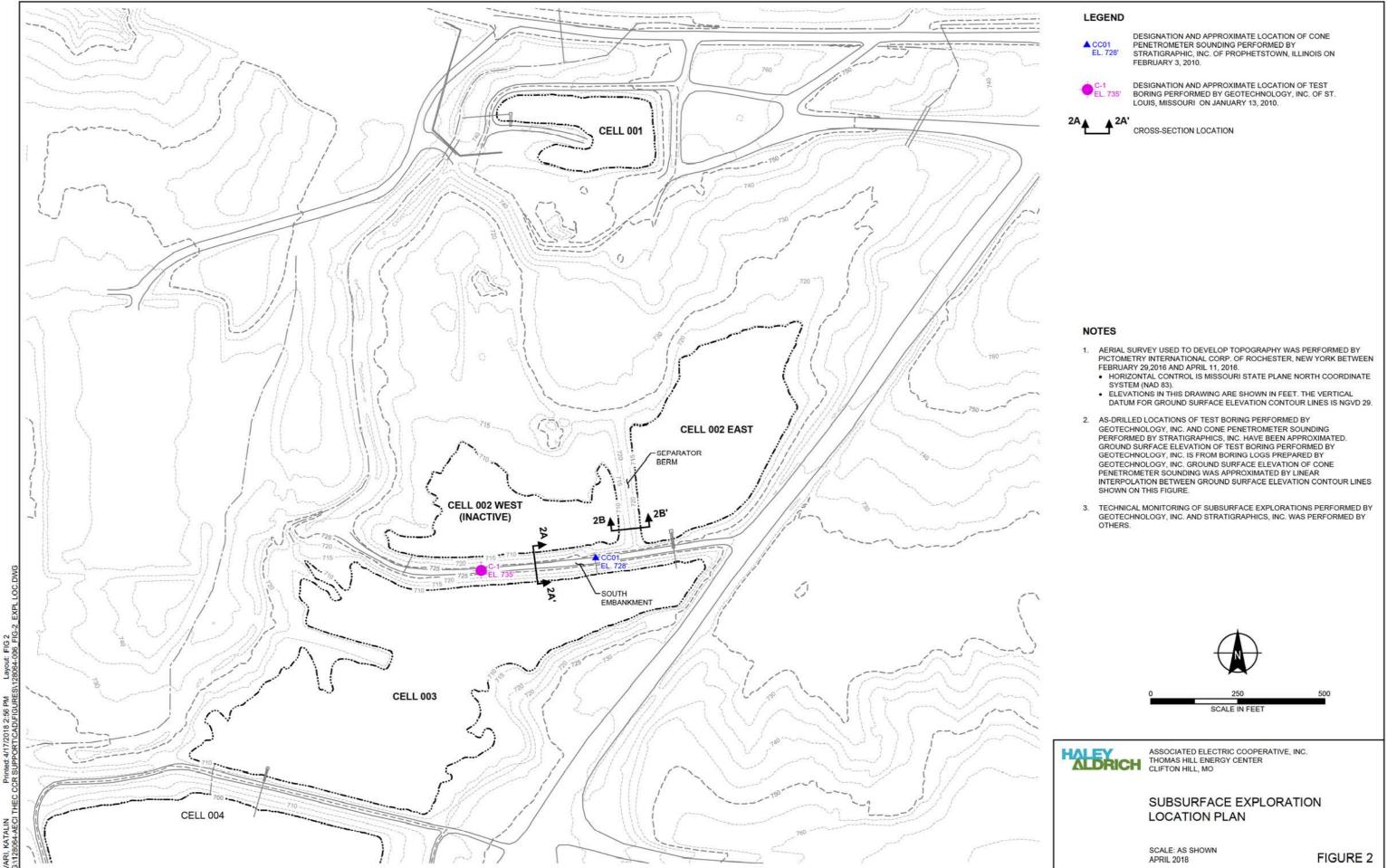
1) Technical monitoring of historic subsurface explorations was performed by others.

2) The elevation data are provided in feet and the vetical datum is unknown. Ground surface elevation of historic test borings were taken from boring logs prepared by Geotechnology, Inc. Ground surface elevation of historic cone penetrometer soundings were approximated by linear interpolation between ground surface elevation contour lines shown on Figure 2.
 3) Water level readings have been made in the explorations by others at times and under conditions discussed herein. However it must be noted that fluctuations in the level of the water may occur due to variations in season, plant sluicing activities, rainfall, temperature, and other factors not evident at the time measurements were made and reported.

HALEY & ALDRICH, INC. Printed: 16 April 2018 W:\Projects\128064-AECI Thomas Hill\006-TH SFA Cell 002 West\Deliverables\Reports\SFA\Tables\[2018_0416-AECI TH Cell 002 west Geotech Summary Tables-

TABLE IISUMMARY OF HISTORIC LABORATORY TEST RESULTSAECI THOMAS HILL CELL 002 WESTINITIAL SAFETY FACTOR ASSESSMENTCLIFTON HILL, MISSOURI

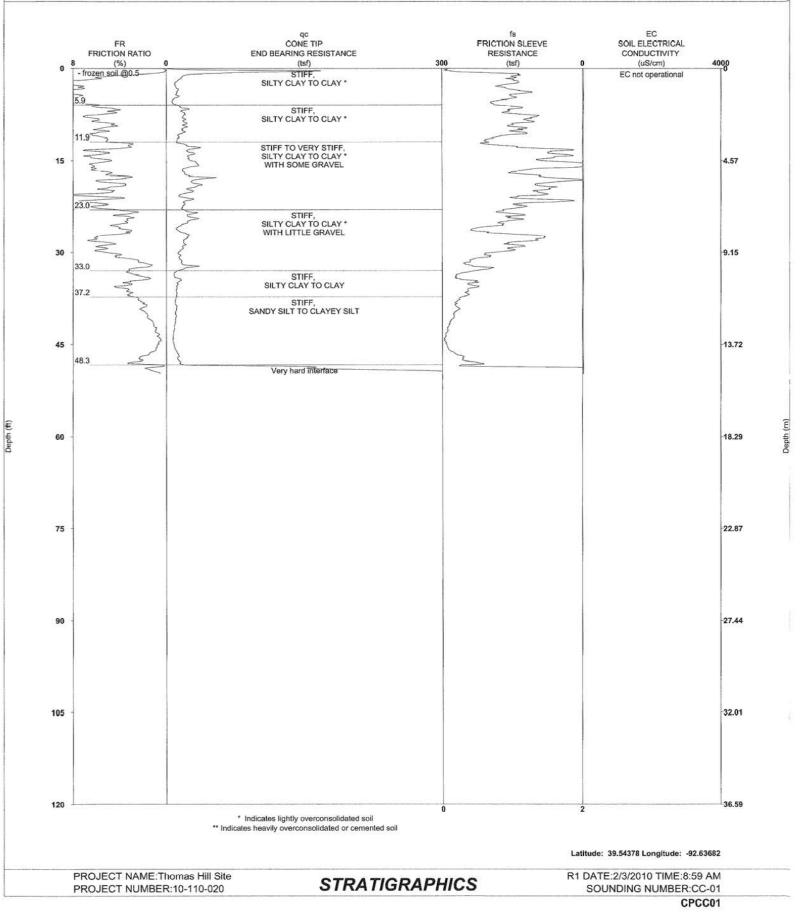

					-							Tube	Density	CU T	riaxial		Hydraulic	Conductivit	1	Standard	l Proctor
Boring Designation	Sample Number	Sample Depth (ft)	USCS Symbol	Material Type/Stratum	Moisture Content (%)	ш	PL	PI	% Gravel	% Sand	% Fines	Average Moisture Content (%)	Average Total Density (pcf)	C' (psf)	φ' (degrees)	Moisture Content (%)	Dry Density (pcf)	k (cm/sec)	Confining Pressure (psf)	Max. Dry Density (pcf)	Optimum Mositure (%)
				HISTORIC	TESTING BY GEO	TECHNOLOGY	, INC. IN AP	RIL 2010													
C-1	SS2	3.5-5.0		SOUTH BERM FILL	24																
C-1	SS3	6.0-7.5	СН	SOUTH BERM FILL	24	52	28	24						-				, j			
C-1	SS4	8.5-10.0	CH	SOUTH BERM FILL	23															2	\square
C-1	ST5	11.0-13.0	СН	NATIVE CLAY	14																
C-1	ST6	13.5-15.5	CH	NATIVE CLAY		51	25	26				30	126.1	0	26						\square
C-1	ST6	13.5-15.5	СН	NATIVE CLAY								22	120.8								\square
C-1	SS7	18.5-20.0	CH	NATIVE CLAY	16																\square
C-1	SS8	23.5-25.0	СН	NATIVE CLAY	27																
C-1	SS9	28.5-30.0	СН	NATIVE CLAY	24																\square
C-1	SS10	33.5-35.0	CL	NATIVE CLAY	24	44	18	26													
C-1	SS11	38.5-40.0	CL	NATIVE CLAY	24																
C-1	SS12	43.5-45.0	CH	NATIVE CLAY	27									-							
C-1	SS13	48.5-50.0	CH	NATIVE CLAY	29																
				HISTORIC TESTING B	Y GREDELL ENGIN	EERING RESO	DURCES, INC	. IN OCTOB	ER 2015												
AECI-THEC 1	(remolded)		CL	SEPARATOR BERM FILL	19.6	41	17	24								18.0	109.0	7x10-9	90	112.4	15.6
AECI-THEC 2			CL	SEPARATOR BERM FILL	18	44	17	27													<u>لــــــــــــــــــــــــــــــــــــ</u>
AECI-THEC 3			CL	SEPARATOR BERM FILL	17.5	42	16	26						-							
AECI-THEC 4	(remolded)	2020-5402	CL	SEPARATOR BERM FILL	18.4	44	18	26												112.7	13.8
TP-1	BS1	1.0	CH	SEPARATOR BERM FILL	24.5	59	26	33													<u>اا</u>
TP-1	BS2	4.0	SC	SEPARATOR BERM FILL	16.7	38	18	20	0.0	61.0	39.0										
TP-1	BS3	10.0	CL	SEPARATOR BERM FILL	16.4	38	19	19													<u>اا</u>
TP-2	BS1	1.0	CH	SEPARATOR BERM FILL	25.8	53	23	31													
TP-2	BS2	2.5	CH	SEPARATOR BERM FILL	31.8	58	28	30													<u>اا</u>
TP-2	BS3	6.0	SC	SEPARATOR BERM FILL	19.6	34	18	16	0.0	75.0	25.0										
T-3	T-3 AECI-THEC			SEPARATOR BERM FILL	19.9	70	26	44								-					
On-site borrow area	(remolded)		CH	SEPARATOR BERM FILL	29	84	18	66												89.9	21.2


HALEY & ALDRICH, INC.

W:\Projects\128064-AECI Thomas Hill\006-TH SFA Cell 002 West\Deliverables\Reports\SFA\Tables\[2018_0416-AECI TH Cell 002 west Geotech Summary Tables-

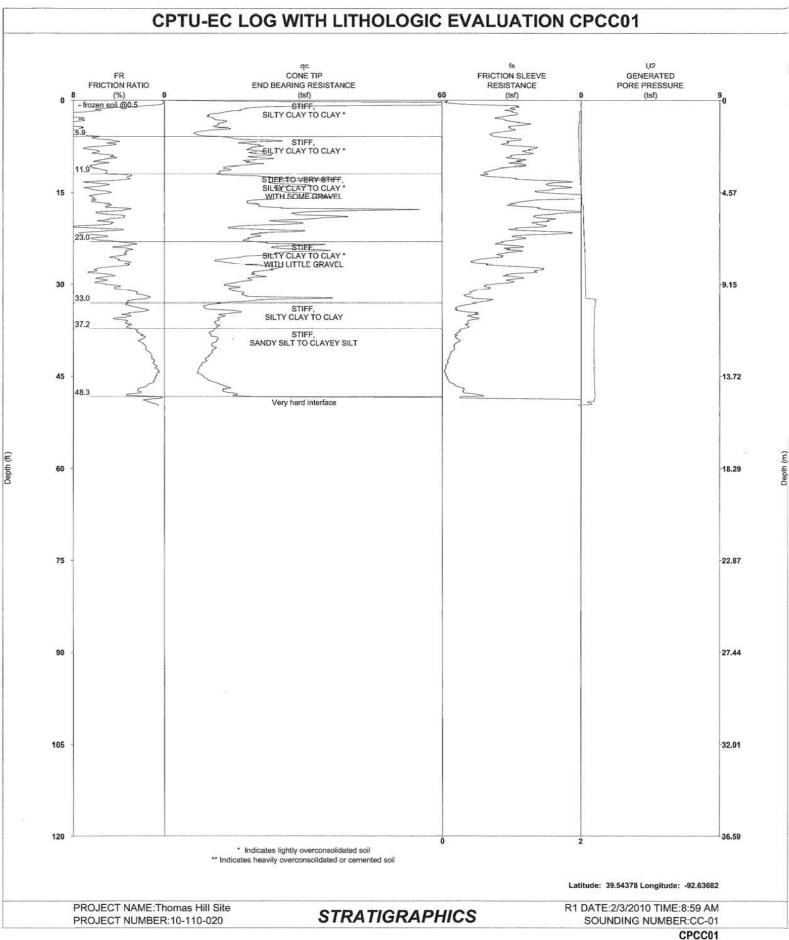
Printed: 16 April 2018

FIGURES

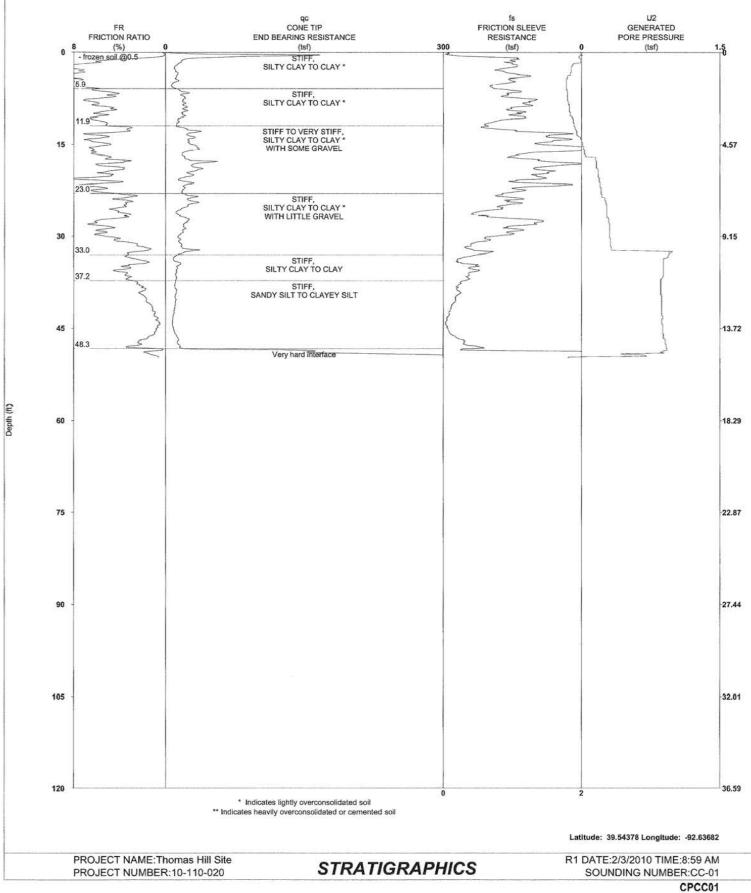

APPENDIX A

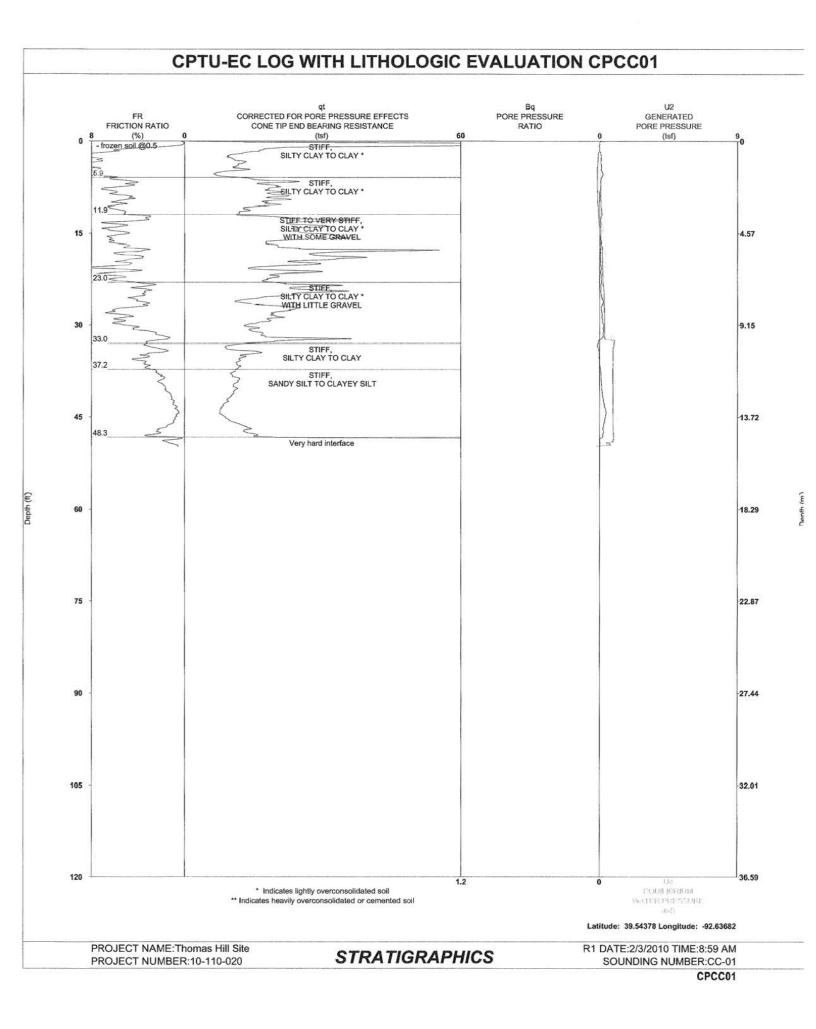
Historic Subsurface Exploration Logs and Laboratory Test Results

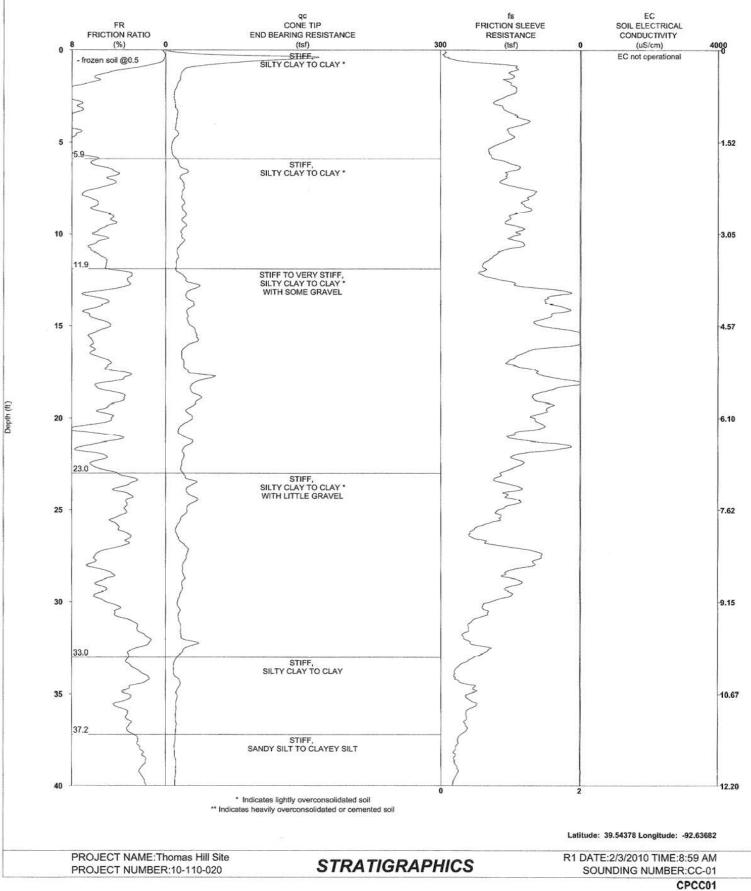

Г						~ ~		SHE	AR STRENGTH,	tsf			
	Surfac	e Elevation: _735_	Completion Date:	1/13/10		DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD		Δ - UU/2	O - QU/2	🗆 - SV			
					90	LN1 LN1				1999 - 1999 - P			
	C	Datum msl			L C	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SAMPLES	0 ₁ 5 1 ₁ 0					
					ΗĔ	H NOVO	L L	STANDARD PENETRATION RESISTANCE					
- 1					GRAPHIC LOG	FOR	SAN		(ASTM D 1586)	FOOT			
	DEPTH IN FEET	DESCO		TEDIAI	GR	N N N N			UE (BLOWS PER				
1	E N	DESCRI	DESCRIPTION OF MATERIAL	SPY		PI	FER CONTENT,						
1	-=							10 20	30 40	50			
t		Crushed rock, slag a	and fly ash										
t						4-4-6	SS1		•				
		FILL: brown and gra	ay clay, trace silt and	sand	\otimes								
t					\otimes								
- I						3-4-4	SS2		•				
t	- 5-								1001010101	101100701			
						3-4-5	SS3		•				
										ta sta ina si			
s					- XXX			1111111111	2101010100				
μ¥ Σ						4-5-6	SS4		•	1111111111			
ONIC	- 10-												
SES		Very stiff, yellow, bro	own and gray CLAY -	(CH)	111		OTE						
NEE!		1999 N. 1997 N. 19					ST5						
PUR					11					20 0 0 1 0 10 0			
NOTE: STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES AND THE TRANSITION MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.					111	97	ST6	1111111111					
RAT	- 15-				111	99							
UST								101001111	1110110111				
8 ILL		Medium stiff to stiff,	brown and gray CLA	Y with sand and	111	3			101110111				
FOF		gravel - CH						11111111111	1111111111	1111111111			
MIX 00						3-5-7	SS7		1111111111				
PR0	- 20-					2							
AP						2							
H B						2							
ENT UAL						1	-	1111111111					
RESI						3-3-4	SS8						
E OF	- 25-					1	-	1212 21212 21212 2					
K B								1111111111	1011111111	0100000000			
LIN MM									30111111111	0000000000			
TION										111111111			
ICA1						3-4-5	SS9	X					
TRA	— 30—					2				********			
STR/								1111111111					
ND		Stiff to medium stiff	f, gray, silty CLAY - (C	CL)				11111111111	1111111111				
NOT						2	-	10111111100	1111111111				
						5-7-7	SS10	11111 4 1 H		-:1 ::::::::::			
01/0	— 35—					1							
4/2					111					1 226 262 26			
GPJ					1///					111111111			
301					1//	8							
0638					111	2-4-4	SS11	11141111	:•:::::::				
GTINC 0638301					<u> </u>	<u>v1</u>	1	Drawn by: KSA	Checked by: SK	App'vd. by: MHM			
GTI		GROUNDWATER D	ATA	DRILLING	G DAT	<u>A</u>		Date: 1/20/10	Date: 4/6/10	Date: 4/19/10			
LAD. DND ASH -		X FREE WATER N	TOF	AUGER _3 3/4'	" HOLI	LOW STE	M						
ONC	ENC	OUNTERED DURING		A 200	11111				GEOTECHNI	DLOGYZ			
PO				WASHBORING FF						OM THE GROUND UP			
ASH	1			BS DRILLER F	REW_L	.OGGER							
				<u>CME 550X</u>	DRILL	RIG			The second LUP				
1130901				HAMMER TY	PE A	uto		0.0	Thomas Hill h Pond Evaluat	ion			
					5.000			AS					
22 W	DE	MARKS:											
2.00	I RE	MARINO.							G OF BORING:	C-1			
SNIS	1								G OF BURING:	0-1			
LOG OF BORING 2002 WL													
OF	1							Proi	ect No. J0113	309.01			
LOG							WALKER CONT						


C	e Elevation: _735_ Datum _msl_					∆ - UU/2 0,5 1,	O - QU/2 0 1,5 2 PENETRATION (ASTM D 1586)	□ - SV i ⁰ 2,5
DEPTH IN FEET	DESCR	IPTION OF MATERIAL	MATERIAL 907 907 907 907 907 907 907 907 907 907	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS CORE RECOVERY/RQD	SAMPLES	WA	LUE (BLOWS PE	. %
ΩΞ				Cosp		PL 10 2	0 30 4	10 50
	Stiff to medium stiff	, gray, silty CLAY - (CL) (continued)				1111111111	1000000000	111111
	Medium stiff to stiff.	brown and gray CLAY, trace sand - CH						
		<u> </u>				11111111111	1.1.1.1.1.1.1	
- 45-				2-3-3	SS12	<u></u>		
								1 12 5 12 10
				3-4-4	SS13	1111111111	1000000000	2.14.14.64
- 50	Boring terminated a	t 50 feet		5-4-4	3313	· · · · • · · · · · ·	·····	
	Doning terminated a					1111111111		
- 55-								
								111111
					1	11111111111	11111111111	11111111
- 60-						2.2.2 2.2.2 2.2.3		
						000000000000		
- 65-						101000000	10101010111	
				f .			1111111111	1111111
						0.040.040.044	1101001000	
						2.23.2.23.2.2		1111111
- 70-						11111111111		
						11111111111		
75								
- 75-								
								2111111
								20.000.0.2
	GROUNDWATER D	DATA DRILLI	NG DAT	<u>4</u>		Drawn by: KSA Date: 1/20/10	Checked by: SK Date: 4/6/10	App'vd. by: MH Date: 4/19/10
			<u>3/4"</u> HOLI	OW STE	M		OFOTFOUN	
ENCO	OUNTERED DURING	DRILLING WASHBORING	FROM 4	0 FEET		C	GEOTECHN	ROM THE GROUND UP
		<u>BS</u> DRILLER						NAW INC ONDORO OF
		<u>CME 550</u> HAMMER				As	Thomas Hill sh Pond Evalua	tion
REN	ARKS:						CONTINUATION DG OF BORING	
						Pro	ject No. J011	309.01

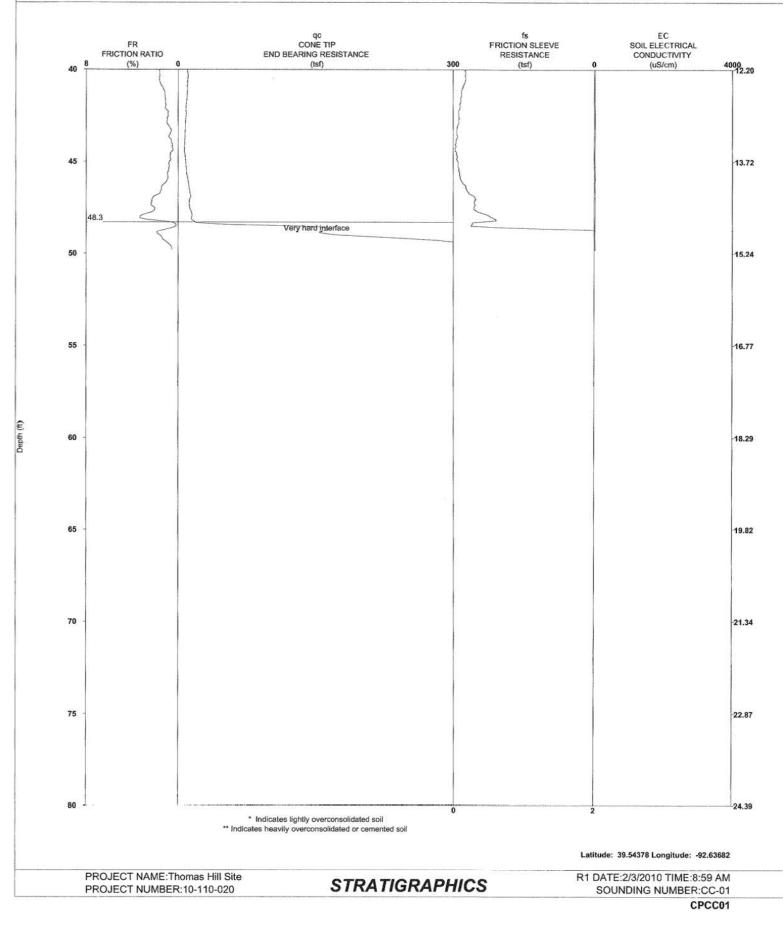
CPTU-EC LOG WITH LITHOLOGIC EVALUATION CPCC01

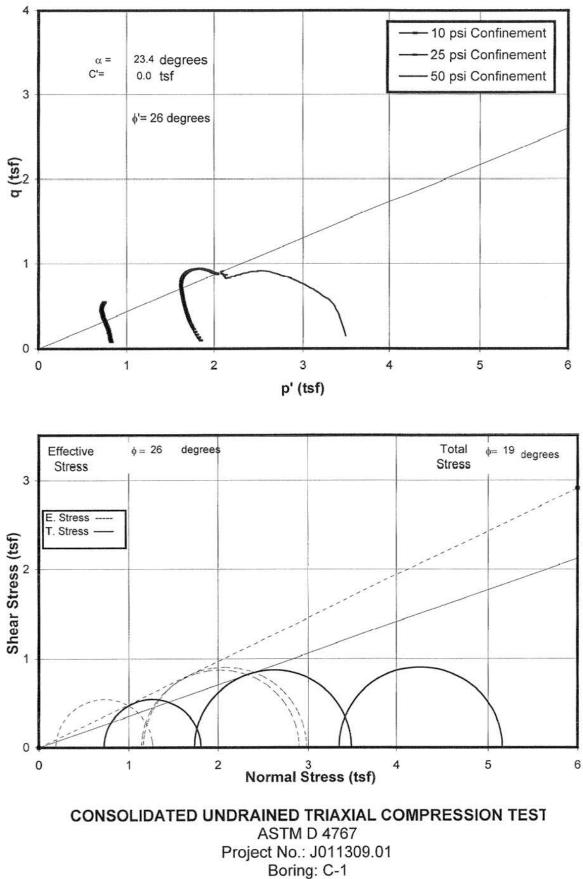




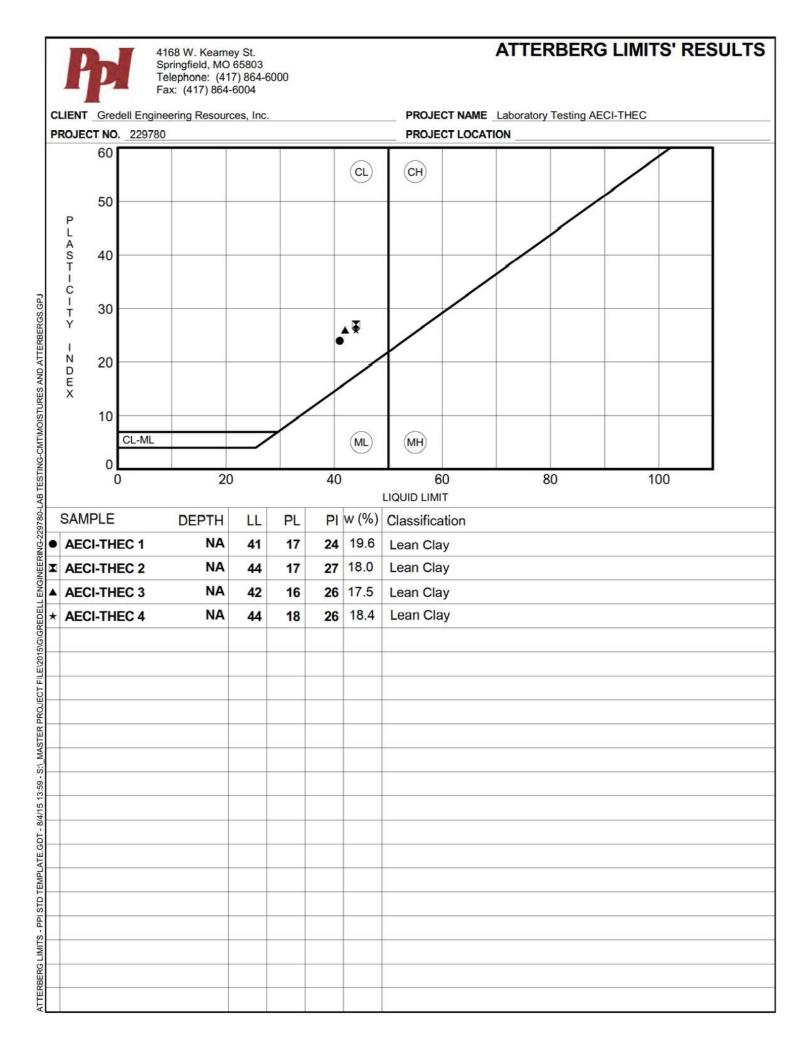


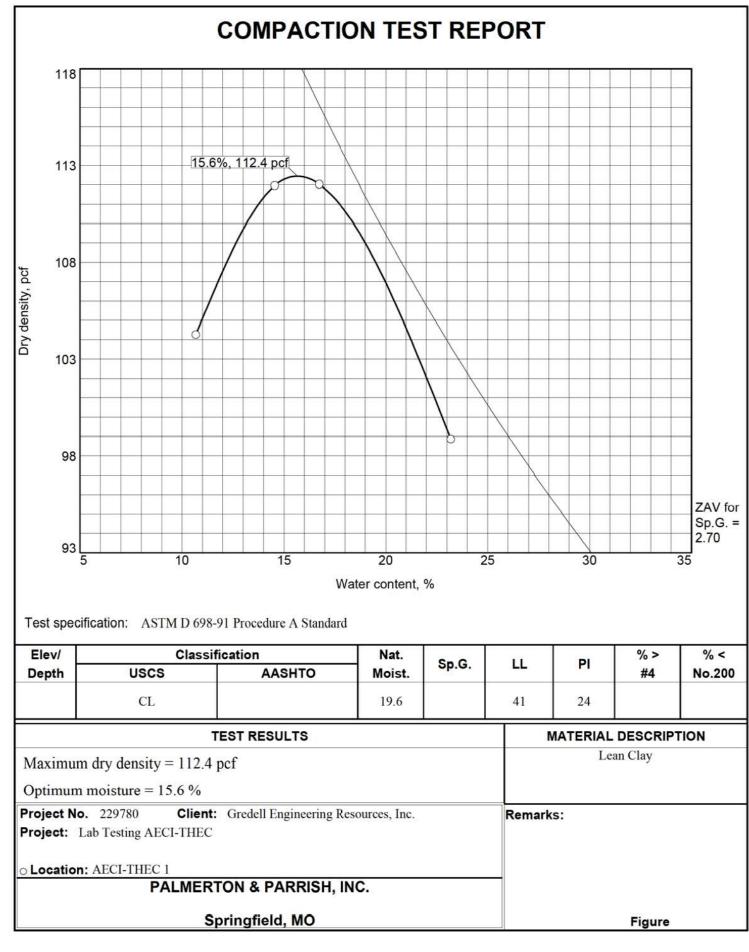
(m) thref

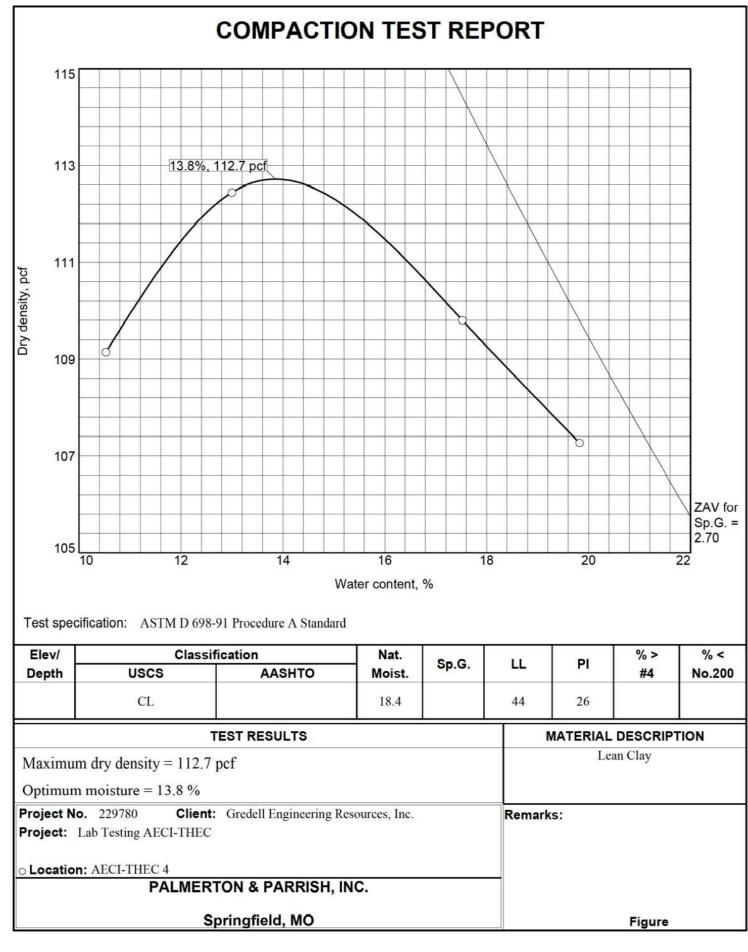


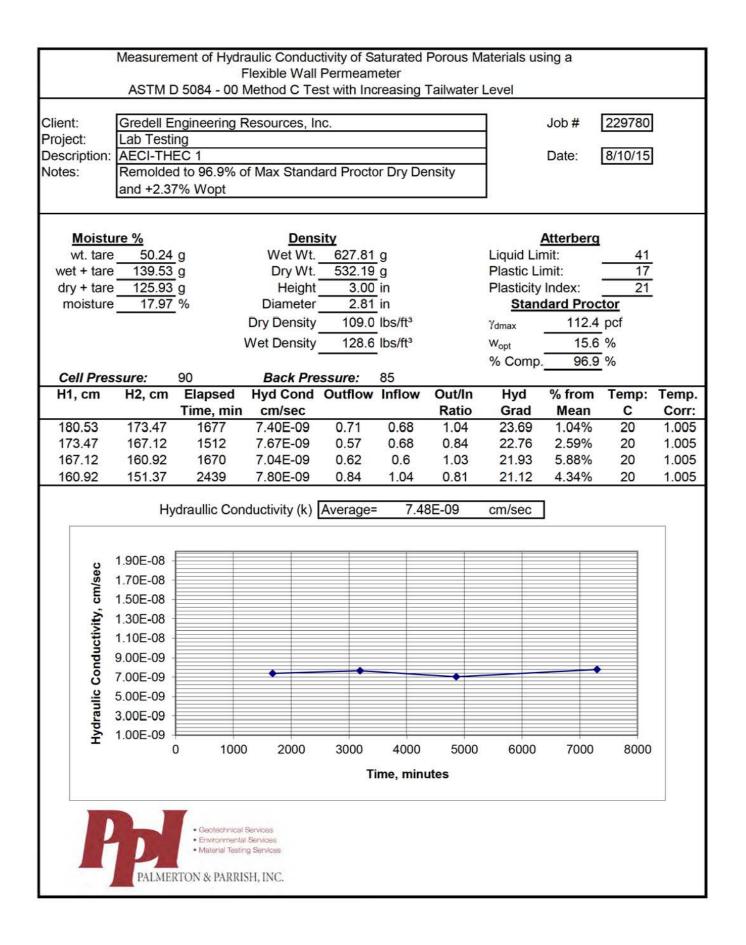


Find Hand


CPTU-EC LOG WITH LITHOLOGIC EVALUATION CPCC01




(m) Anon



Sample: ST-6 - Depth: 13.5

September 28, 2015

Mr. Thomas R. Gredell, P.E. GREDELL Engineering Resources, Inc. 1505 E High St Jefferson City MO 65101-4826

RE: Laboratory Testing Thomas Hill Energy Center JGE No. 15118.3

Dear Mr. Gredell:

On September 15, 2015, Jacobi Geotechnical Engineering received six soil test pit samples, identified as seen below, for analysis. Tests assigned for the samples from your letter dated September 11, 2015 included Moisture Content (ASTM D 2216), Atterberg Limits (ASTM D 4318), and particle size analysis – hydrometer (ASTM D 422) on Test Pit 1, 4.0' and Test Pit 2, 6.0'. Test results are presented in the table below. Attached are the lab data sheets

Sample ID	Moisture Content %	Atterberg Limits	Hydrometer
Test Pit 1, 1.0'	24.5	Liquid Limit: 59 Plastic Limit: 26 Plastic Index: 33 Classification: CH	
Test Pit 1, 4.0'	Liquid Limi Plastic Limi		Sand 61% Silt 24% Clay 15%
Test Pit 1, 10.0'	16.4	Liquid Limit: 38 Plastic Limit: 19 Plastic Index: 19 Classification: CL	N/A
Test Pit 2, 1.0'	25.8	Liquid Limit: 53 Plastic Limit: 23 Plastic Index: 31 Classification: CH	N/A
Test Pit 2, 2.5'	31.8	Liquid Limit: 58 Plastic Limit: 28 Plastic Index: 30 Classification: CH	N/A
Test Pit 2, 6.0'	19.6	Liquid Limit: 34 Plastic Limit: 18 Plastic Index: 16 Classification: SC	Sand 75% Silt 17% Clay 8%

We will discard the samples in 30 days unless other arrangements are made.

We appreciate the opportunity to provide services on this project. If you have any questions concerning this letter, please call.

Sincerely,

Jacobi Geotechnical Engineering, Inc.

de.

Matt Schultz Staff Engineer

a Carl L. Jacobi, DF

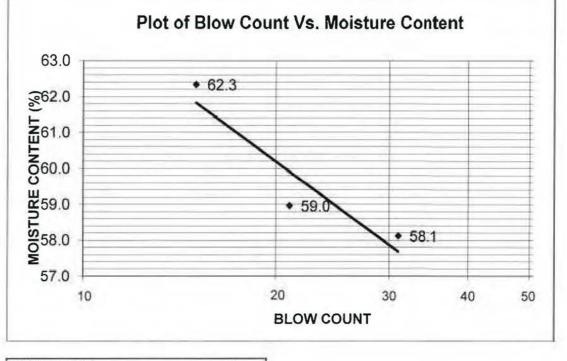
Principal /

Enclosure: Lab Data Sheets

ATTERBERG LIMIT DATA SHEET (ASTM D 4318)

JACOBI GEOTECHNICAL ENGINEERING, INC.

GENERAL INFORMATION


PROJECT NAME:	Thomas Hill Energy Center	TESTED BY: JRP
JGE JOB No.:	15118	CALCULATED BY: JRP
TEST DATE:	9/16/2015	CHECKED BY: MJS
EQUIPMENT:	AL-2	

SOIL INFORMATION

TEST PIT NO .:	TP-1	SAMPLE :	BS-1	DEPTH: 1'	
SOIL DESC:					

TESTING DATA

BLOW COUNT	1	IQUID LIMI	т	PLASTIC LIMIT		Natural
	31	21	15			
WET + TARE	13.86	12.39	11.67	8.22	10.93	a constant
DRY + TARE	8.92	7.95	7.35	6.61	8.80	
WT. WATER	4.94	4.44	4.32	1.61	2.13	
WT. TARE	0.42	0.42	0.42	0.42	0.42	
WT. DRY SOIL	8.50	7.53	6.93	6.19	8.38	
% MOISTURE	58.1	59.0	62.3	26.0	25.4	24.5

LIQUID LIMIT	59
PLASTIC LIMIT	26
PLASTICITY INDEX	33
CLASSIFICATION	CH

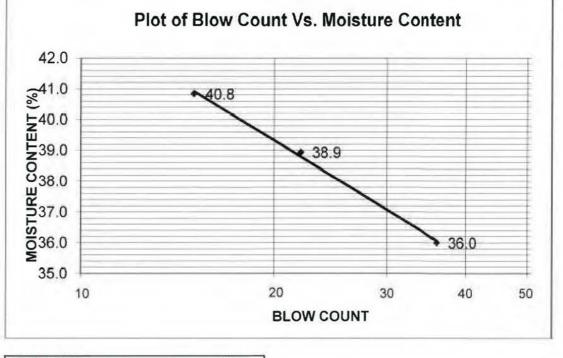
Remarks:

798 HOFF RD OFALLON, MO 63366-1920

ATTERBERG LIMIT DATA SHEET (ASTM D 4318)

JACOBI GEOTECHNICAL ENGINEERING, INC.

GENERAL INFORMATION


PROJECT NAME	: Thomas Hill Energy Center	TESTED BY: JRP
JGE JOB No .:	15118	CALCULATED BY: JRP
TEST DATE:	9/17/2015	CHECKED BY: MJS
EQUIPMENT:	AL-2	

SOIL INFORMATION

TEST PIT NO.:	TP-1	SAMPLE : BS-2	DEPTH: 4'
SOIL DESC:			

TESTING DATA

BLOW COUNT	1	IQUID LIMI	Г	PLASTIC LIMIT		Natural	
	36	22	15				
WET + TARE	17.76	16.62	15.18	9.12	8.93		
DRY + TARE	13.17	12.08	10.90	7.81	7.62		
WT. WATER	4.59	4.54	4.28	1.31	1.31		
WT. TARE	0.42	0.42	0.42	0.42	0.42		
WT. DRY SOIL	12.75	11.66	10.48	7.39	7.20		
% MOISTURE	36.0	38.9	40.8	17.7	18.2	16.7	

LIQUID LIMIT	38
PLASTIC LIMIT	18
PLASTICITY INDEX	20
CLASSIFICATION	SC

Remarks:

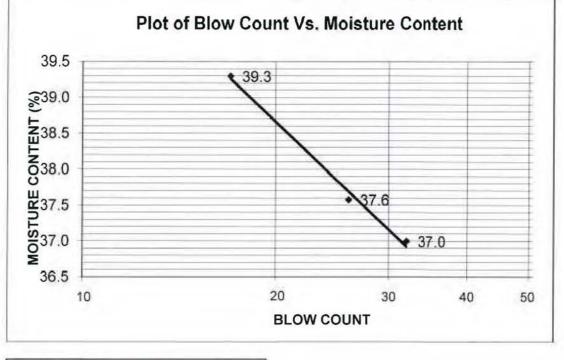
798 HOFF RD OFALLON, MO 63366-1920 PHONE: (636) 978-7112 FAX: (636) 978-7113

ATTERBERG LIMIT DATA SHEET

JACOBI GEOTECHNICAL ENGINEERING, INC.

(ASTM D 4318)

GENERAL INFORMATION


PROJECT NAME	E: Thomas Hill Energy Center	TESTED BY: JRP
JGE JOB No.:	15118	CALCULATED BY: JRP
TEST DATE:	9/16/2015	CHECKED BY: MJS
EQUIPMENT:	AL-2	

SOIL INFORMATION

TEST PIT NO .:	TP-1	SAMPLE : BS-3	DEPTH: 10'	
SOIL DESC:				

TESTING DATA

BLOW COUNT	1	IQUID LIMI	Т	PLAST	PLASTIC LIMIT	
	32	26	17			
WET + TARE	16.38	16.75	15.84	9.36	11.40	a second second second
DRY + TARE	12.07	12.29	11.49	7.95	9.64	
WT. WATER	4.31	4.46	4.35	1.41	1.76	
WT. TARE	0.42	0.42	0.42	0.42	0.42	
WT. DRY SOIL	11.65	11.87	11.07	7.53	9.22	
% MOISTURE	37.0	37.6	39.3	18.7	19.1	16.4

LIQUID LIMIT	38
PLASTIC LIMIT	19
PLASTICITY INDEX	19
CLASSIFICATION	CL

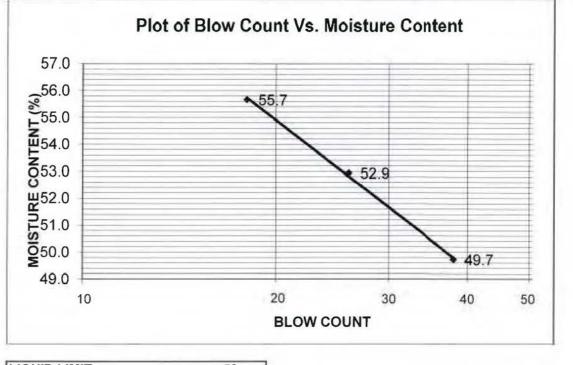
Remarks:

798 HOFF RD OFALLON, MO 63366-1920 PHONE: (636) 978-7112 FAX: (636) 978-7113 www.jacobiengineer.com

ATTERBERG LIMIT DATA SHEET (ASTM D 4318)

JACOBI GEOTECHNICAL ENGINEERING, INC.

GENERAL INFORMATION


PROJECT NAME	: Thomas Hill Energy Center	TESTED BY: JRP
JGE JOB No.:	15118	CALCULATED BY: JRP
TEST DATE:	9/16/2015	CHECKED BY: MJS
EQUIPMENT:	AL-2	

SOIL INFORMATION

TEST PIT NO .:	TP-2	SAMPLE : BS-1	DEPTH: 1'	
SOIL DESC:				

TESTING DATA

BLOW COUNT	LIQUID LIMIT			PLASTIC LIMIT		Natural
	38	26	18			
WET + TARE	14.21	14.46	13.06	8.30	8.63	
DRY + TARE	9.63	9.60	8.54	6.86	7.10	
WT. WATER	4.58	4.86	4.52	1.44	1.53	
WT. TARE	0.42	0.42	0.42	0.42	0.42	
WT. DRY SOIL	9.21	9.18	8.12	6.44	6.68	
% MOISTURE	49.7	52.9	55.7	22.4	22.9	25.8

LIQUID LIMIT	53
PLASTIC LIMIT	23
PLASTICITY INDEX	31
CLASSIFICATION	СН

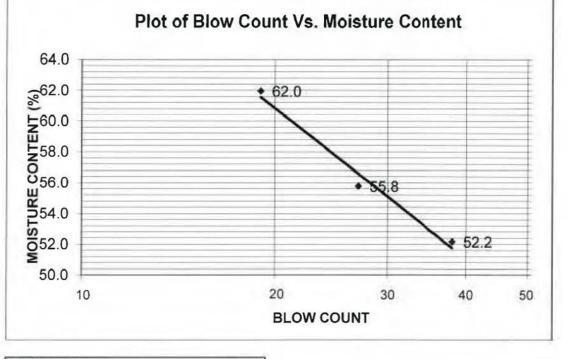
Remarks:

798 HOFF RD OFALLON, MO 63366-1920 PHONE: (636) 978-7112 FAX: (636) 978-7113 www.jacobiengineer.com

ATTERBERG LIMIT DATA SHEET (ASTM D 4318)

JACOBI GEOTECHNICAL ENGINEERING, INC.

GENERAL INFORMATION


PROJECT NAME	: Thomas Hill Energy Center	TESTED BY: JRP
JGE JOB No.:	15118	CALCULATED BY: JRP
TEST DATE:	9/18/2015	CHECKED BY: MJS
EQUIPMENT:	AL-2	

SOIL INFORMATION

TEST PIT NO .:	TP-2	SAMPLE :	BS-2	DEPTH: 2.5'
SOIL DESC:				

TESTING DATA

BLOW COUNT	L	LIQUID LIMIT		PLASTIC LIMIT		Natural
	38	27	19			
WET + TARE	13.78	13.52	11.66	9.02	9.62	
DRY + TARE	9.20	8.83	7.36	7.18	7.59	1
WT. WATER	4.58	4.69	4.30	1.84	2.03	
WT. TARE	0.42	0.42	0.42	0.42	0.42	
WT. DRY SOIL	8.78	8.41	6.94	6.76	7.17	
% MOISTURE	52.2	55.8	62.0	27.2	28.3	31.8

58
28
30
СН

Remarks:

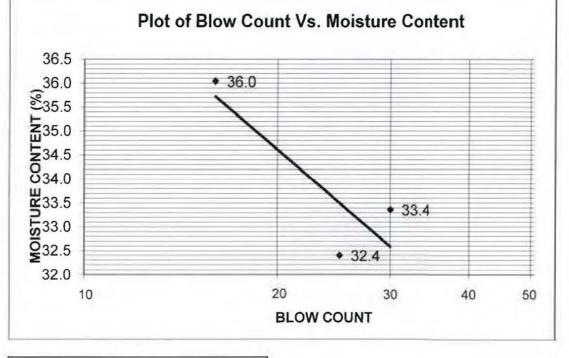
798 HOFF RD OFALLON, MO 63366-1920 PHONE: (636) 978-7112 FAX: (636) 978-7113 www.jacobiengineer.com

ATTERBERG LIMIT DATA SHEET

JACOBI GEOTECHNICAL ENGINEERING, INC.

(ASTM D 4318)

GENERAL INFORMATION


PROJECT NAME	: Thomas Hill Energy Center	TESTED BY: JRP
JGE JOB No.:	15118	CALCULATED BY: JRP
TEST DATE:	9/21/2015	CHECKED BY: MJS
EQUIPMENT:	AL-2	

SOIL INFORMATION

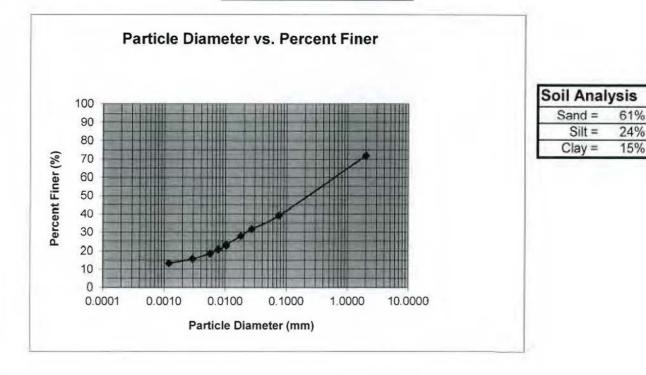
TEST PIT NO .:	TP-2	SAMPLE : BS-3	DEPTH: 6'
SOIL DESC:			

TESTING DATA

BLOW COUNT	LIQUID LIMIT			PLASTIC LIMIT		Natural
	30	25	16			
WET + TARE	17.61	17.42	16.01	8.25	10.06	
DRY + TARE	13.31	13.26	11.88	7.09	8.57	
WT. WATER	4.30	4.16	4.13	1.16	1.49	
WT. TARE	0.42	0.42	0.42	0.42	0.42	
WT. DRY SOIL	12.89	12.84	11.46	6.67	8.15	
% MOISTURE	33.4	32.4	36.0	17.4	18.3	19.6

LIQUID LIMIT	34
PLASTIC LIMIT	18
PLASTICITY INDEX	16
CLASSIFICATION	SC

Remarks:


798 HOFF RD OFALLON, MO 63366-1920

JACOBI GEOTECHNICAL ENGINEERING, INC.

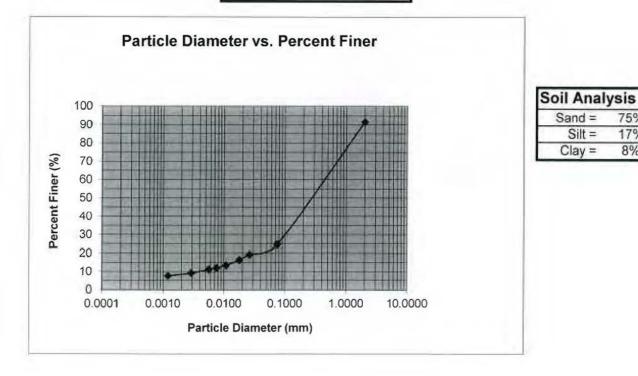
HYDROMETER ANALYSIS DATA SHEET (MINUS # 10 FRACTION ONLY)

PROJECT:	 Thomas Hill Energy Center 	1992	TEST DATE:	Sep-15
JOB NO .:	15118		TESTED BY:	JM
BORING NO .:	TP-1		CALCULATED BY:	JM
SAMPLE :			REMARKS:	
DEPTH:	4 feet		Contraction of the second	
SAMPLE DESCR	RIPTION: Clayey Sand SC		MOISTURE	CONTENT
PERCENT RETA	NNED ON NO. 200 SIEVE	60.9%	TARE NO.: WET + TARE: DRY + TARE: WT. TARE: % MOISTURE:	

PARTICLE	PERCEN	TFINER
DIAMETER	PARTIAL	TOTAL
(mm)	(hydro only)	w/+10 frac
2		71.86
0.07500		39.07
0.02680		31.65
0.01780		27.80
0.01030		23.04
0.00760		20.81
0.00560		18.65
0.00290		15.69
0.00120		13.29

JACOBI GEOTECHNICAL ENGINEERING, INC.

75%


17%

8%

HYDROMETER ANALYSIS DATA SHEET (MINUS # 10 FRACTION ONLY)

PROJECT:	Thomas Hill Energy Center		TEST DATE:	Sep-15
JOB NO.;	15118		TESTED BY:	JM
BORING NO .:	TP-2		CALCULATED BY: J	IM
SAMPLE :			REMARKS:	
DEPTH:	6 feet			
SAMPLE DESCF	RIPTION: Clayey Sand So	C	MOISTURE	CONTENT
PERCENT RETA	INED ON NO. 200 SIEVE	75.3%	TARE NO.: WET + TARE: DRY + TARE: WT. TARE: % MOISTURE:	

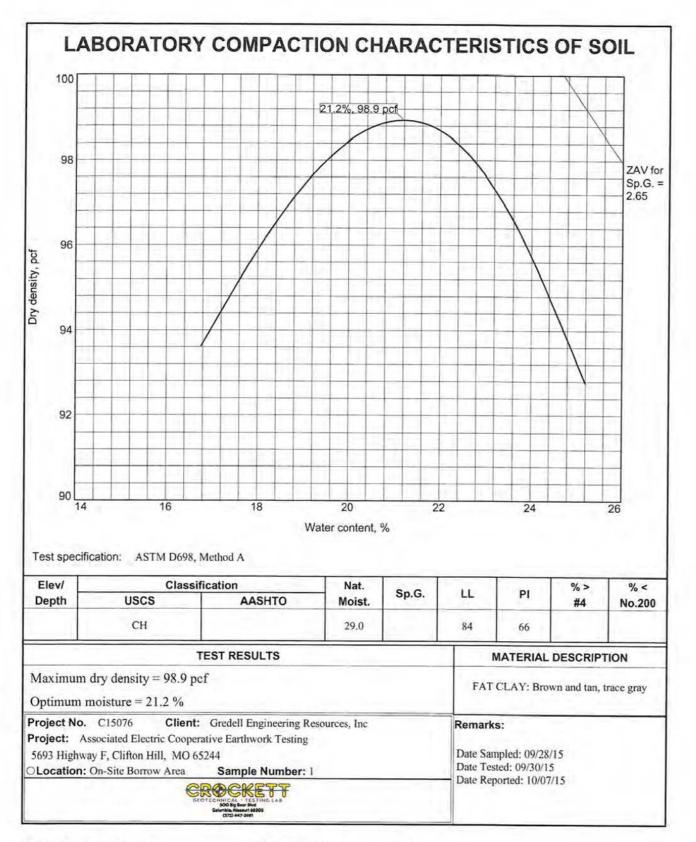
PARTICLE	PERCEN	TFINER
DIAMETER	PARTIAL	TOTAL
(mm)	(hydro only)	w/+10 frac
2		91.43
0.07500		24.66
0.02630		19.29
0.01780		16.27
0.01080		13.46
0.00750		11.91
0.00560		11.11
0.00290		9.12
0.00120		7.57

en i i e in e ie ee e e n i 573-634-3455 573-634-8898 (fax)

October 5, 2015

Mr. Bruce Dawson Gredell Engineering Resources, Inc. 1505 East High Street Jefferson City, MO 65101

RE: Laboratory Soil Testing Job No. 15-075M Associated Electric Coop. Inc. Thomas Hill, MO Report # 21237


Dear Bruce,

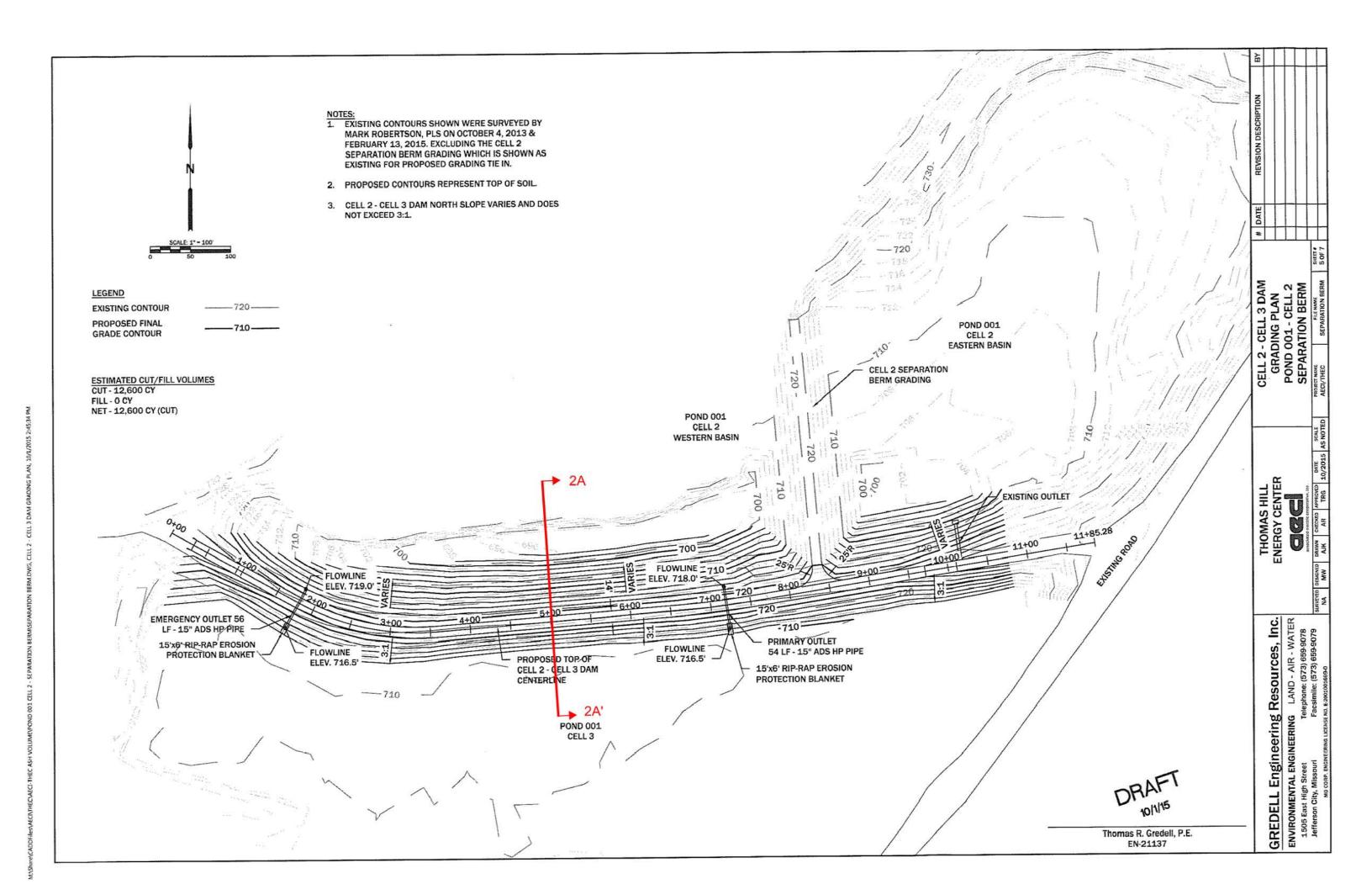
The following are the laboratory soil testing results conducted on soil delivered to our office on September 29, 2015.

Comple Number	Moisture Content %	Atterberg Limits						
Sample Number	Woisture Content %	LL	PL	PI				
T-3, AECI - THEC	19.9	70	26	44				
· · · · · · · · · · · · · · · · · · ·								

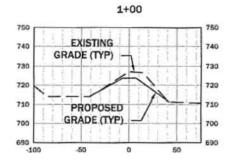
If you have any questions, please contact me at 573-634-3455. Sincerely, CENTRAL MISSOURI PROFESSIONAL SERVICES, INC.

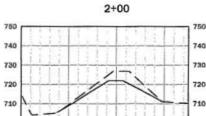
Robert M Bates, PE

Tested By: Levi Strodtman

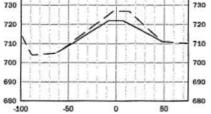

Checked By: Shane Steinman, E.I.

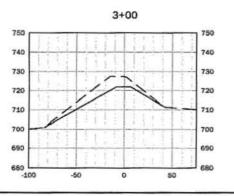
Stone Sta-

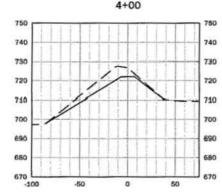

APPENDIX B

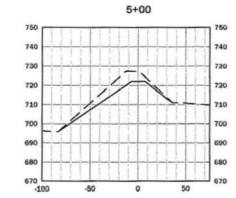

Analyses

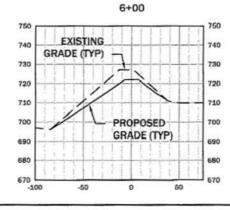
Historic Grading Plans and Cross Sections

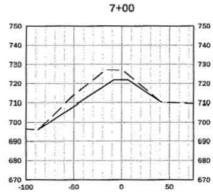




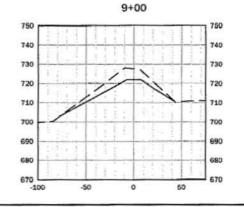


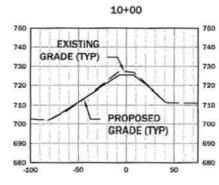


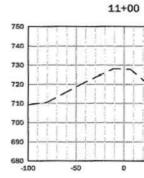

750

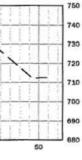


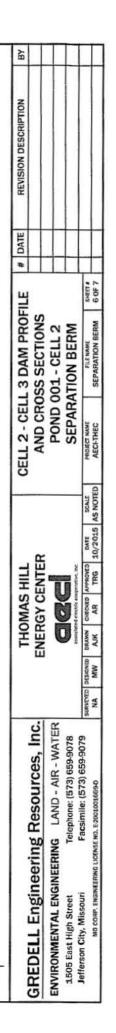


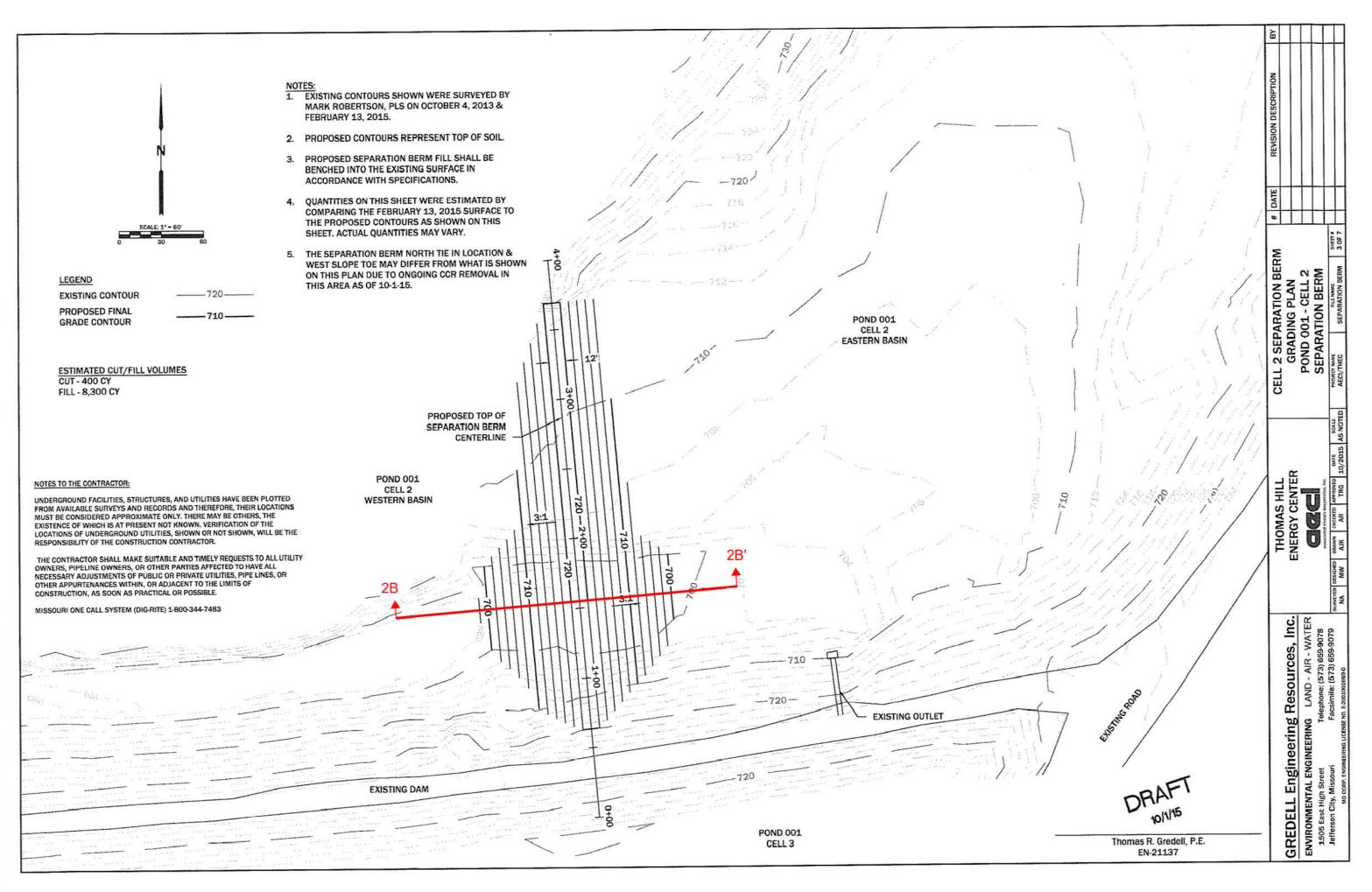


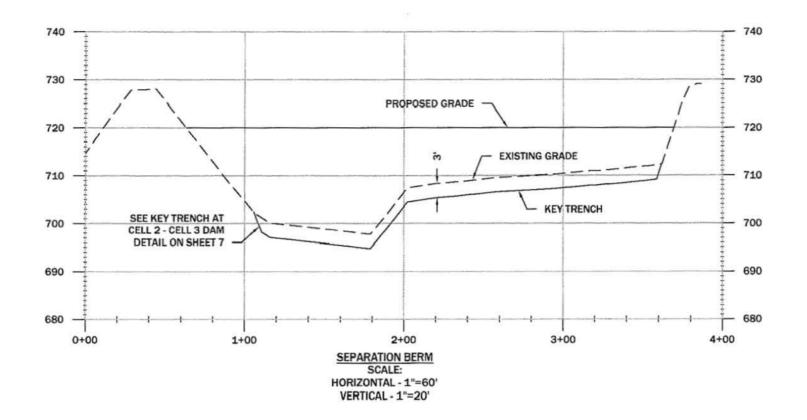


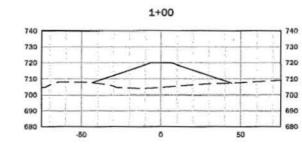


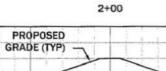



CROSS SECTIONS SCALE: HORIZONTAL - 1"=100" VERTICAL - 1"=50"

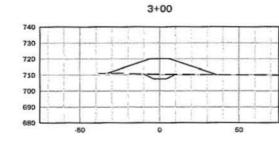





10/1/15


Thomas R. Gredell, P.E. EN-21137

EXISTING


GRADE (TYP)

(TYP)

KEY TRENCH

-50

CROSS SECTIONS SCALE: HORIZONTAL - 1"=60' VERTICAL - 1"=60'

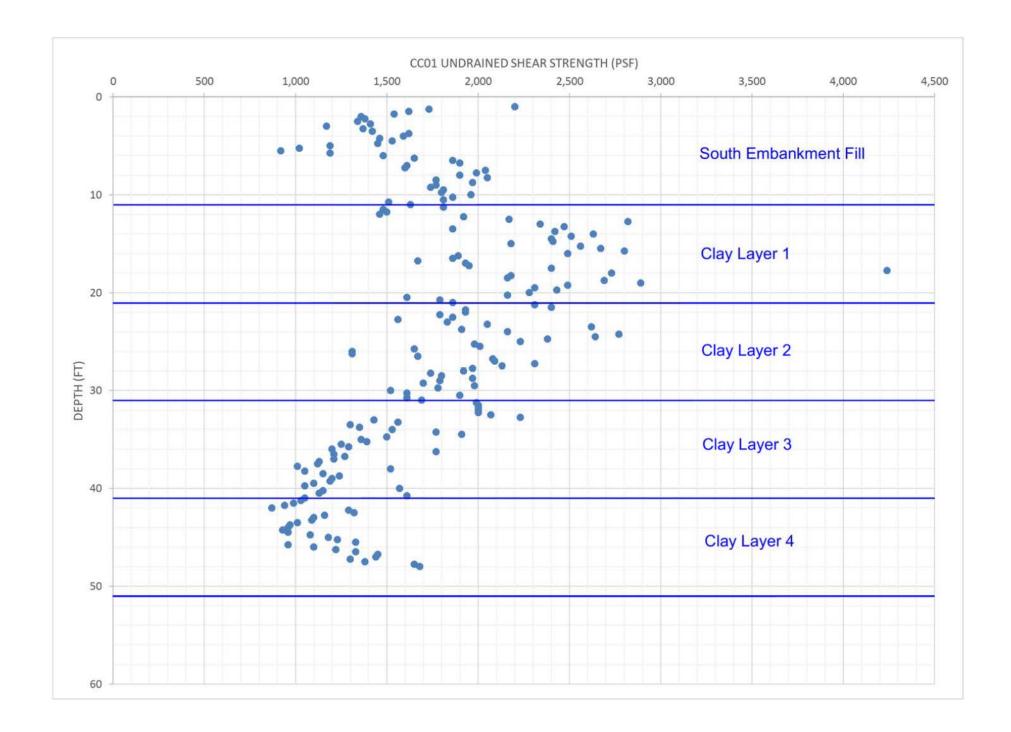
	BY	Т			Т	٦
	8	+			+	-
	REVISION DESCRIPTION					
	# DATE					_
					::	-
	M	NOL			SHEET	2
	CELL 2 SEPARATION BERM	PROFILE AND CROSS SECTIONS	POND 001 - CELL 2	SEPARATION BERM	FILE NAME	SEPARAHUR DENM
NOTE: 1. SEE SHEET 7 FOR SEPARATION BERM AND KEY TRENCH DETAILS	CELL 2 SE	PROFILE ANI	POND	SEPAR	PROJECT NAME	
740 720	THOMAS HILL	ENERGY CENTER		resociated electric cooperative, inc	SURVEYED DESIGNED DRAWN CHECKED APPROVED DATE SCALE	WW AUN AN AN ING
710 700 690 680 DRAFT 101/15 Thomas R. Gredell, P.E. EN-21137	DEDELL Facinocating Decomposed Inc.	GREDELL ENGINEERING RESOURCES, INC.	GINEERIN		Jerterson City, Missouri Facsimile: (573) 659-9079	MO COMP. ENGINEERING LICENSE NO. E-20010018039-0

Design Soil Properties

SOIL PROPERTY CHARACTERIZATION - THOMAS HILL ENERGY CENTER CELL 002 WEST

		Total Unit	Weight, y _T					Undraine	d Shear Strength, S	Su								Drain	ned Shear Stre	ength			
Material ²	CPT	Laboratory	Historic	Current	SP	T	C	PT	CIU Trx		Histori	C	Current		SPT		CPT	Laborat	ory CIU Trx	Hist	toric	Cur	rent
Wateria	avg	Site-Wide Average	Design ¹	Design	avg	avg - 1σ	avg	avg - 1σ	avg	1	Design	1	Design	avg	avg - 1σ	avg	avg - 1σ	Laborati	ory cro mx	Des	ign ¹	Des	sign
	γт	γт	Υт	γт	Su	Su	Su	Su	Su	с	¢	Su	Su	φ'		¢'	φ'	C'	¢'	C	φ'	C'	φ'
South Embankment Fill			120 pcf	125 pcf	1,895 psf	1,638 psf	1,615 psf	1,320 psf	2 71	-	1	-	1,300 psf	1977	255					100 psf	28°	100 psf	28°
Seperation Berm	ł.	-		125 pcf	-122		1,440			1	E.	3	1,300 psf	15 44 19	i H	11 0	-	1		: 220		100 psf	28°
Native Clay 1	×.	123 pcf		120 pcf	2,394 psf	2,394 psf	2,245 psf	1,734 psf	10.00 2000	-	-	÷	1,700 psf	-				0 psf	26°			50 psf	27°
Native Clay 2	-		120 pcf	120 pcf	1,596 psf	1,314 psf	1,954 psf	1,619 psf		-		-	1,600 psf	-	ł		-			50 psf	27°	50 psf	27°
Native Clay 3	+	-	120 pci	120 pcf	1,097 psf	674 psf	1,452 psf	1,113 psf) au	-	-	-	1,100 psf	-	4			3	0220	Jo psi	21	50 psf	27°
Native Clay 4	-	()		120 pcf	1,397 psf	1,114 psf	1,177 psf	960 psf	-	-	-		950 psf	19 77 0	3 77 8			-				50 psf	27°

Notes:

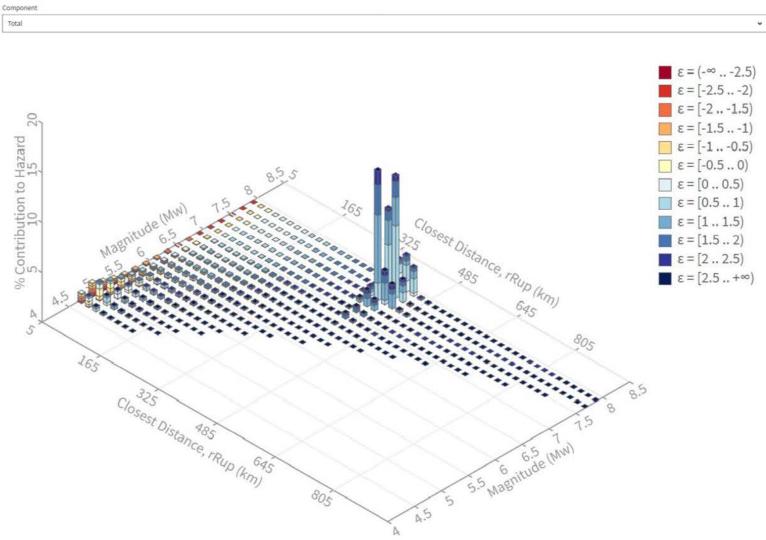

1. Based on historic analyses performed by Geotechnology, Inc.

2. In cases where historic design properties, SPT/CPT correlations, and laboratory test data do not exist, the current design properties for these materials have been conservatively estimated using typical published values and Haley & Aldrich's experience with similar materials.

HALEY & ALDRICH, INC.

W:\Projects\128064-AECl\006-TH SFA Cell 002 West\Deliverables\Reports\SFA\Appendix B - Analyses\1-Design Soil Properties\[2018-0413-HAI-AECl Thomas Hill Design Soil Properties-F.xlsx]Cell 002

Printed: 15 April 2018



Seismic Documents

ALDRICH	CALCULAT	IONS	File No. Sheet	<u>128064-006</u> 1 of 2
Client	Associated Electric Cooperative, Inc.		Date	5-Apr-18
Project	Thomas Hill Energy Center - Cell 002		Computed by	RJW
Subject	Pseudostatic Coefficient		Checked by	DAS
Objective: -Determination of the Step 1	pseudostatic coefficient for stability analyses of th	e Cell 002 embankment.		
	tel hadrock applemention A for 2% in 50 years we	and 2014 USCS toot file by an entities the		and make a state of the second
	al bedrock acceleration, A _{max} , for 2% in 50 year us	ing 2014 USGS text file by computing the	average of the four corn	ers grid using latitude and
longitude of the site. https://earthquake.u	usgs.gov/static/lfs/nshm/conterminous/2014/	data/		
Site Coordinates: Latitude Longitude PGA for 2% in 50 yr eve	39.545 -92.637 ent = 0.057 g			
Step 2 Classify site stiffness. http://earthquake.u: Use USGS design applie 2010 ASCE 7 (w/ march Site Class =	sgs.gov/designmaps/us/application.php ration tool			
surface) acceleration u propogated upward th http://earthquake.u	and longitude, determined site class, and the USG sing the empirical charts. The peak free field accel rough the existing soils at the site. sgs.gov/designmaps/us/application.php n the ASCE-10 Summary Report			
USGS Site Coefficient, I Peak Free Field Acceler	Ppga =	1.6 091 g		
<u>Step 4</u> Estimate peak accelera	tion at the top of the embankment using Figure 2	(Singh and Sun,1995).		
0.19 0.00 0.00 0.00 0.14 0.10 0.10 0.00 0.00	REFUSE HELDORT INTE IN	Using Figure 2 peak acceleration at top of embankm Note: The peak acceleration at the to estimated using Figure 2 from the Sin for refuse.	p of the embankment ha	The second se

HALEY	CALCULATIONS	File No. Sheet	<u>128064-006</u> <u>2 of 2</u>
Client	Associated Electric Cooperative, Inc.	Date	5-Apr-18
Project	Thomas Hill Energy Center - Cell 002	Computed by	RJW
Subject	Pseudostatic Coefficient	Checked by	
Step 5			
Calculate pseudo-stat	ic coefficeint using approach developed by Hynes-Griffin and Franklin (1984).		
Pseudo-Static Coeffici	ent = Peak Acceleration at Top of Embankment x 0.5 =	0	.07 g

Deaggregation

Summary statistics for, Deaggregation: Total

Deaggregation targets	Recovered targets	Totals	Mean (for all sources)
Return period: 2475 yrs	Return period: 2484.1818 yrs	Binned: 100 %	r: 291.98 km
Exceedance rate: 0.0004040404 yr ⁻¹	Exceedance rate: 0.00040254703 yr ⁻¹	Residual: 0 %	m: 6.89
PGA ground motion: 0.05556897 g		Trace: 2,3%	εο: 0.78 σ
Mode (largest r-m bin)	Mode (largest to bin)	Discretization	Epsilon keys
r: 407.22 km	r: 424.18 km	r: min = 0.0, max = 1000.0, ∆ = 20.0 km	ε0 : [-∞2.5)
m: 7.52	m: 7.78	m: min = 4.4, max = 9.4, △ = 0.2	ε1: [-2.52.0)
εο: 1.36 σ	εα: 0.73 σ	εt min = -3.0, max = 3.0, Δ = 0.5 σ	ε2: [-2.01.5]
Contribution: 12.95%	Contribution: 7.23 %		ε3: [-1.51.0)
			ε4: [-1.00.5)
			ε 5: [-0.5 0.0)
			£6: [0.0 0.5)
			E7: [0.5 1.0)
			£8: [1.01.5)
			ε9: [1.52.0]
			E10: (2.0 2.5)

ε10: [2.0..2.5) **ε11:** [2.5..+∞]

Deaggregation Contributors

Source Set 4 Source	Туре	r	m	٤٥	lon	lat	az	96
SSCn New Madrid	Cluster							35.72
NMFS RLME 1		419.97	7.68	1.18	89.288°W	36.995"N	133.07	10.65
NMFS RLME 5		427.90	7.67	1.24	89.288°W	36.995*N	133.07	6.34
NMFS RLME 2		413.30	7.68	1.14	89.288°W	36.995°N	133.07	4.95
NMFS RLME 4		419.04	7.68	1.18	89.020°W	37.270°N	127.61	4.61
NMFS RLME 6		419.70	7.67	1.18	89.288°W	36.995°N	133.07	2.98
NMFS RLME 7		426,74	7.67	1.23	89.020°W	37.270°N	127.61	2.75
NMFS RLME 3		412.51	7.68	1.14	89.020°W	37.270°N	127.61	2.14
NMFS RLME 8		418.74	7.67	1.18	89.020°W	37.270°N	127.61	1.29
USGS Fixed Smoothing Zone 1 (opt)	Grid							13.35
SSCn Fixed Smoothing Zone 1 (opt)	Grid							13.01
USGS New Madrid 500-year	Cluster							9.52
NMSZ: Center Model		421.66	7.66	1.21	89.070°W	37.165"N	129.26	6.67
NMSZ: Mid-West Model		411.78	7.65	1.17	89.193°W	37.218°N	129.67	1.09
USGS Adaptive Smoothing Zone 1 (opt)	Grid							6.62
SSCn Adaptive Smoothing Zone 1 (opt)	Grid							6.43
USGS New Madrid 750-year	Cluster							6.35
NMSZ: Center Model		421.66	7.66	1.21	89.070°W	37.165°N	129.26	4.45
JSGS New Madrid 500-year	Fault							2.57
New Madrid central		408,44	7.70	1.06	89,070°W	37.165°N	129.26	1.79
USGS New Madrid 1500-year	Cluster							2.41
NMSZ: Center Model		426.53	7.71	1.16	89.583°W	36.687°N	138.98	1.69

EUSGS Design Maps Detailed Report

ASCE 7-10 Standard (39.544°N, 92.637°W)

Site Class D - "Stiff Soil", Risk Category IV (e.g. essential facilities)

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1</u> ^[1]	S _S = 0.124 g		
From Figure 22-2 ^[2]	S ₁ = 0.077 g		

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Table 20.3-1 Site Classification

Site Class	\overline{v}_{s}	\overline{N} or \overline{N}_{ch}	<u> </u>	
A. Hard Rock	>5,000 ft/s	N/A	N/A	
B. Rock	2,500 to 5,000 ft/s	N/A	N/A	
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf	
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf	
E. Soft clay soil	<600 ft/s	<15	<1,000 psf	
	Any profile with more that characteristics: • Plasticity index PI • Moisture content v • Undrained shear s	> 20, v ≥ 40%, and		
F. Soils requiring site response analysis in accordance with Section	See Section 20.3.1			

21.1

For SI: 1ft/s = 0.3048 m/s 1lb/ft² = 0.0479 kN/m²

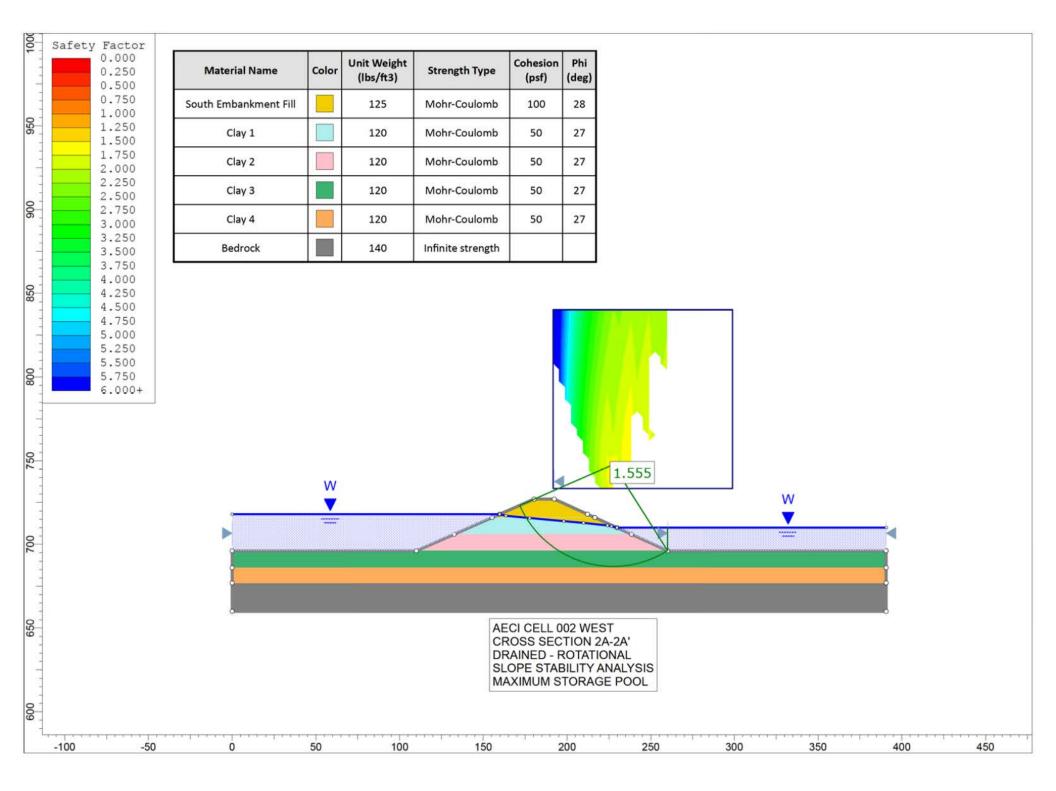
Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

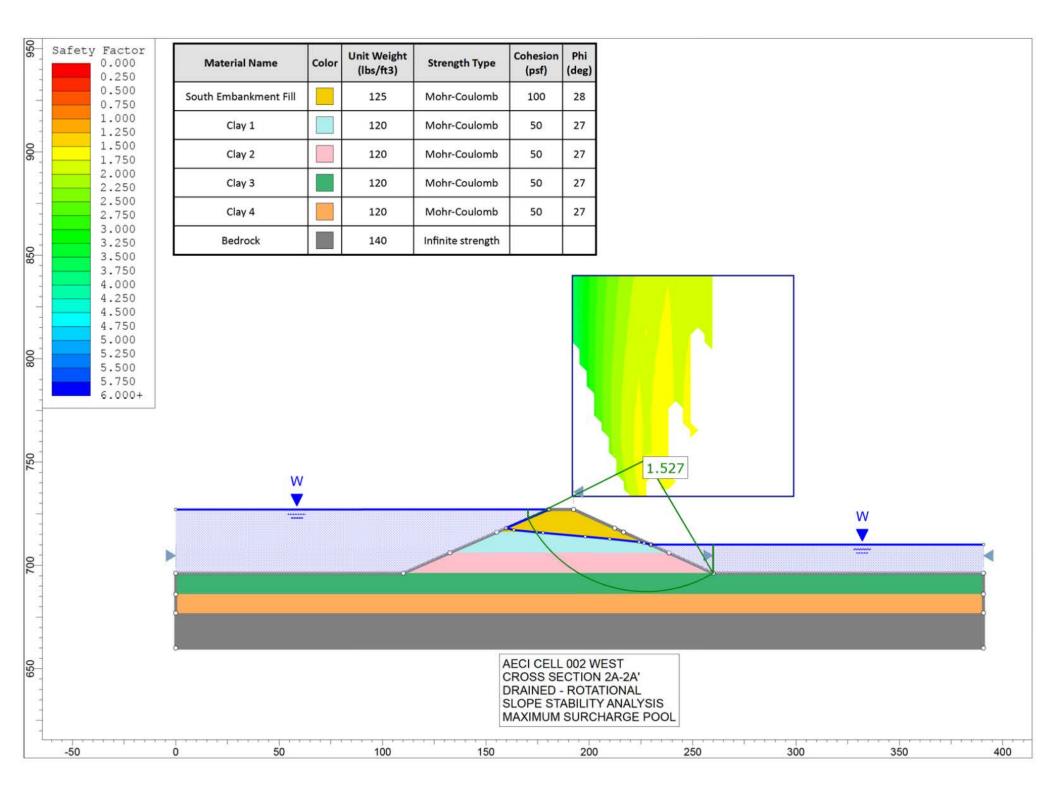
From Figure 22-7 ^[4]	PGA = 0.057
---------------------------------	-------------

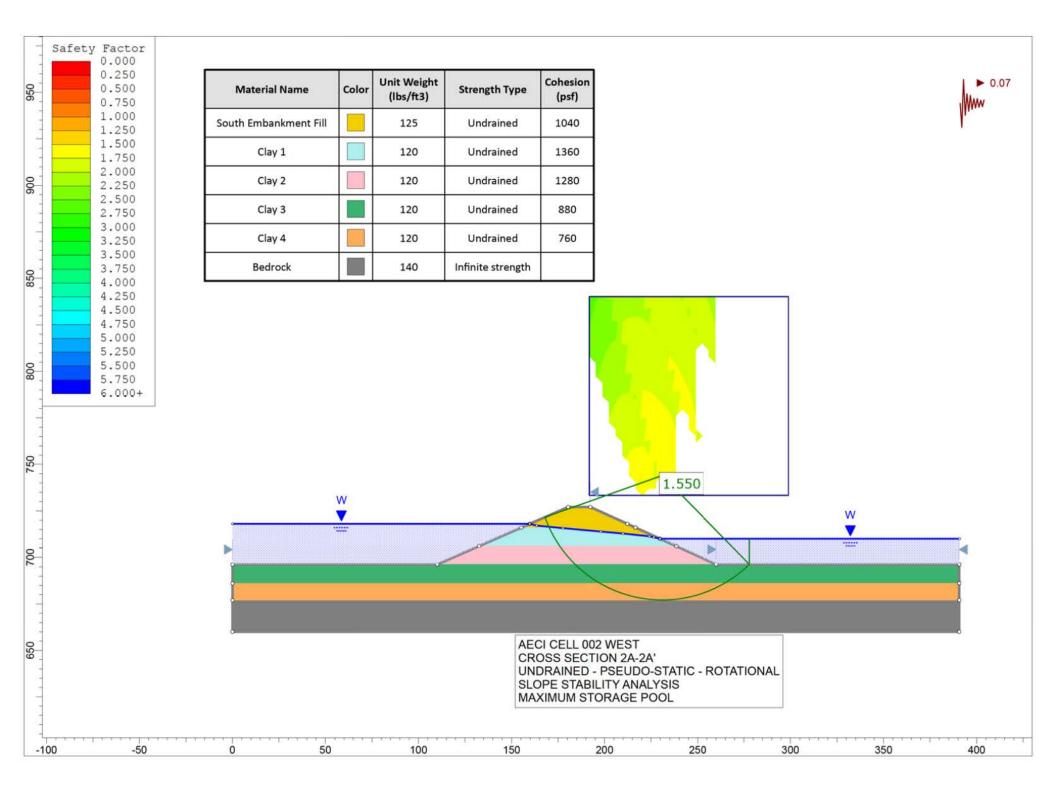
Equation (11.8–1):

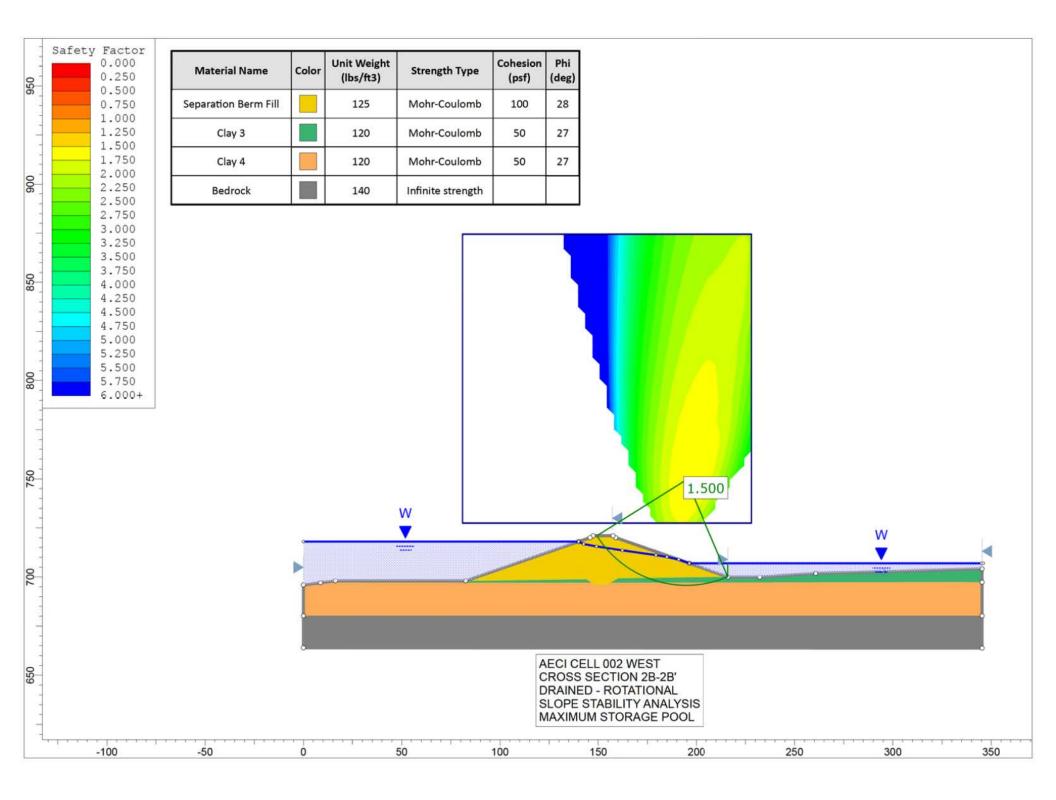
 $PGA_{M} = F_{PGA}PGA = 1.600 \times 0.057 = 0.091 g$

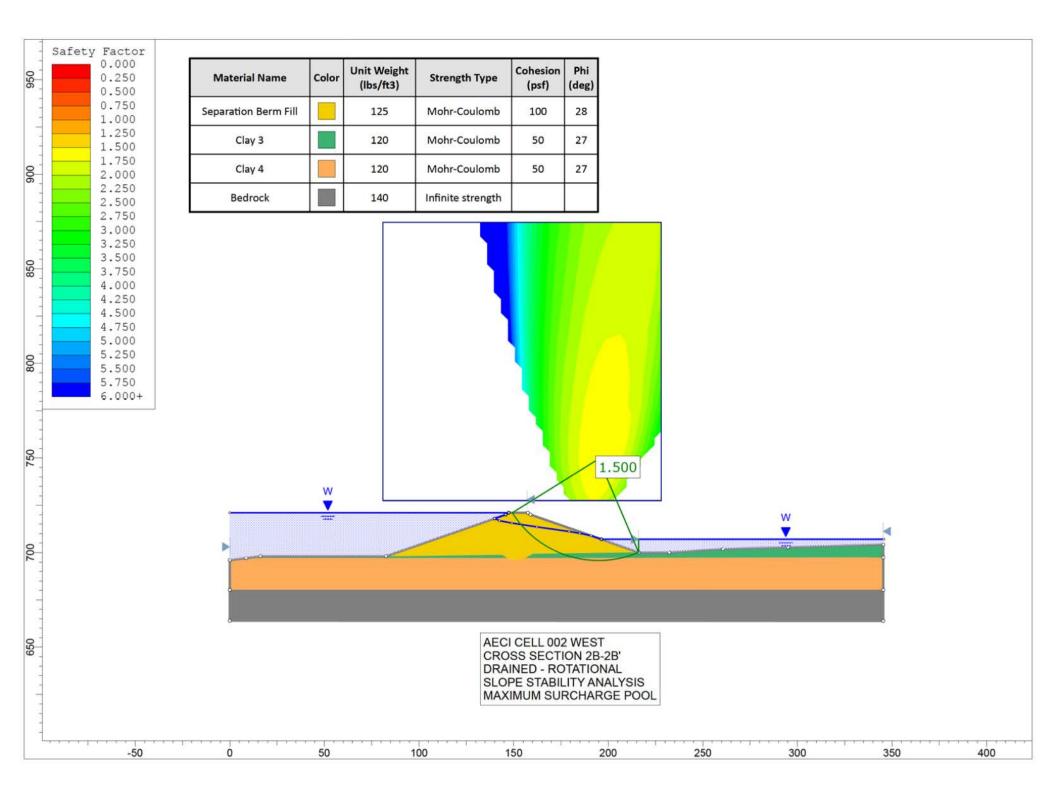
Site	Mapped MCE Geometric Mean Peak Ground Acceleration, PGA				
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50
А	0.8	0.8	0.8	0.8	0.8
в	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See Se	ction 11.4.7 of	ASCE 7	


Note: Use straight-line interpolation for intermediate values of PGA


For Site Class = D and PGA = 0.059 g, $F_{PGA} = 1.600$


Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)


From <u>Figure 22-17</u> ^[5]	$C_{RS} = 0.866$		
From Figure 22-18 ^[6]	$C_{R1} = 0.838$		


Slope Stability

